skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1703655

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Significant optical absorption in the blue–green spectral range, high intralayer carrier mobility, and band alignment suitable for water splitting suggest tin disulfide (SnS2) as a candidate material for photo‐electrochemical applications. In this work, vertically aligned SnS2nanoflakes are synthesized directly on transparent conductive substrates using a scalable close space sublimation (CSS) method. Detailed characterization by time‐resolved terahertz and time‐resolved photoluminescence spectroscopies reveals a high intrinsic carrier mobility of 330 cm2V−1s−1and photoexcited carrier lifetimes of 1.3 ns in these nanoflakes, resulting in a long vertical diffusion length of ≈1 µm. The highest photo‐electrochemical performance is achieved by growing SnS2nanoflakes with heights that are between this diffusion length and the optical absorption depth of ≈2 µm, which balances the competing requirements of charge transport and light absorption. Moreover, the unique stepped morphology of these CSS‐grown nanoflakes improves photocurrent by exposing multiple edge sites in every nanoflake. The optimized vertical SnS2nanoflake photoanodes produce record photocurrents of 4.5 mA cm−2for oxidation of a sulfite hole scavenger and 2.6 mA cm−2for water oxidation without any hole scavenger, both at 1.23 VRHEin neutral electrolyte under simulated AM1.5G sunlight, and stable photocurrents for iodide oxidation in acidic electrolyte. 
    more » « less
  2. Photoelectrochemical (PEC) water splitting has been intensively studied in the past decades as a promising method for large-scale solar energy storage. Among the various issues that limit the progress of this field, the lack of photoelectrode materials with suitable properties in all aspects of light absorption, charge separation and transport, and charge transfer is a key challenge, which has attracted tremendous research attention. A large variety of compositions, in different forms, have been tested. This review aims to summarize efforts in this area, with a focus on materials-related considerations. Issues discussed by this review include synthesis, optoelectronic properties, charge behaviors and catalysis. In the recognition that thin-film materials are representative model systems for the study of these issues, we elected to focus on this form, so as to provide a concise and coherent account on the different strategies that have been proposed and tested. Because practical implementation is of paramount importance to the eventual realization of using solar fuel for solar energy storage, we pay particular attention to strategies proposed to address the stability and catalytic issues, which are two key factors limiting the implementation of efficient photoelectrode materials. To keep the overall discussion focused, all discussions were presented within the context of water splitting reactions. How the thin-film systems may be applied for fundamental studies of the water splitting chemical mechanisms and how to use the model system to test device engineering design strategies are discussed. 
    more » « less