- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Polstra, Thomas (3)
-
POLSTRA, THOMAS (2)
-
Carvajal-Rojas, Javier (1)
-
MA, LINQUAN (1)
-
Ma, Linquan (1)
-
Quy, Pham Hung (1)
-
SCHWEDE, KARL (1)
-
SMIRNOV, ILYA (1)
-
Schwede, Karl (1)
-
Smirnov, Ilya (1)
-
TUCKER, KEVIN (1)
-
Tucker, Kevin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Carvajal-Rojas, Javier; Ma, Linquan; Polstra, Thomas; Schwede, Karl; Tucker, Kevin (, Journal of Singularities)null (Ed.)
-
POLSTRA, THOMAS; SMIRNOV, ILYA (, Nagoya Mathematical Journal)We establish the continuity of Hilbert–Kunz multiplicity and F-signature as functions from a Cohen–Macaulay local ring $$(R,\mathfrak{m},k)$$ of prime characteristic to the real numbers at reduced parameter elements with respect to the $$\mathfrak{m}$$ -adic topology.more » « less
-
Polstra, Thomas; Quy, Pham Hung (, Journal of Algebra)
-
MA, LINQUAN; POLSTRA, THOMAS; SCHWEDE, KARL; TUCKER, KEVIN (, Forum of Mathematics, Sigma)We study $$F$$ -signature under proper birational morphisms $$\unicode[STIX]{x1D70B}:Y\rightarrow X$$ , showing that $$F$$ -signature strictly increases for small morphisms or if $$K_{Y}\leqslant \unicode[STIX]{x1D70B}^{\ast }K_{X}$$ . In certain cases, we can even show that the $$F$$ -signature of $$Y$$ is at least twice as that of $$X$$ . We also provide examples of $$F$$ -signature dropping and Hilbert–Kunz multiplicity increasing under birational maps without these hypotheses.more » « less
An official website of the United States government
