skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1704189

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine learning (ML) algorithms have advanced significantly in recent years, progressively evolving into artificial intelligence (AI) agents capable of solving complex, human-like intellectual challenges. Despite the advancements, the interpretability of these sophisticated models lags behind, with many ML architectures remaining black boxes that are too intricate and expansive for human interpretation. Recognizing this issue, there has been a revived interest in the field of explainable AI (XAI) aimed at explaining these opaque ML models. However, XAI tools often suffer from being tightly coupled with the underlying ML models and are inefficient due to redundant computations. We introduce provenance-enabled explainable AI (PXAI). PXAI decouples XAI computation from ML models through a provenance graph that tracks the creation and transformation of all data within the model. PXAI improves XAI computational efficiency by excluding irrelevant and insignificant variables and computation in the provenance graph. Through various case studies, we demonstrate how PXAI enhances computational efficiency when interpreting complex ML models, confirming its potential as a valuable tool in the field of XAI. 
    more » « less
    Free, publicly-accessible full text available December 18, 2025
  2. null (Ed.)
    Tor exit blocking, in which websites disallow clients arriving from Tor, is a growing and potentially existential threat to the anonymity network. This paper introduces HebTor, a new and robust architecture for exit bridges—short-lived proxies that serve as alternative egress points for Tor. A key insight of HebTor is that exit bridges can operate as Tor onion services, allowing any device that can create outbound TCP connections to serve as an exit bridge, regardless of the presence of NATs and/or firewalls. HebTor employs a micro-payment system that compensates exit bridge operators for their services, and a privacy-preserving reputation scheme that prevents freeloading. We show that HebTor effectively thwarts server-side blocking of Tor, and we describe the security, privacy, and legal implications of our design. 
    more » « less
  3. Despite the emergence of probabilistic logic programming (PLP) languages for data driven applications, there are currently no debugging tools based on provenance for PLP programs. In this paper, we propose a novel provenance model and system, called P3 (Provenance for Probabilistic logic Programs) for analyzing PLP programs. P3 enables four types of provenance queries: traditional explanation queries, queries for finding the set of most important derivations within an approximate error, top-K most influential queries, and modification queries that enable us to modify tuple probabilities with fewest modifications to program or input data. We apply these queries into real-world scenarios and present theoretical analysis and practical algorithms for such queries. We have developed a prototype of P3, and our evaluation on real-world data demonstrates that the system can support a wide-range of provenance queries with explainable results. Moreover, the system maintains provenance and execute queries efficiently with low overhead. 
    more » « less