skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1706978

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ionic liquids are currently being considered as potential electrolyte candidates for next-generation batteries and energy storage devices due to their high thermal and chemical stability. However, high viscosity and low conductivity at lower temperatures have severely hampered their commercial applications. To overcome these challenges, it is necessary to develop structure–property models for ionic liquid transport properties to guide the ionic liquid design. This work expands our previous effort in developing a machine learning model on imidazolium-based ionic liquids to now include ten different cation families, representing structural and chemical diversity. The model dataset contains 2869 ionic conductivity values over a temperature range of 238–472 K collected from the NIST ILThermo database and literature values for 397 unique ionic liquids. The database covers 214 unique cations and 68 unique anions. Three machine learning models, namely multiple linear regression, random forest, and extreme gradient boosting are applied to correlate the ionic liquid conductivity data with cation and anion features. Shapely additive analysis is performed to glean insights into cation and anion features with significant impact on ionic conductivity. Finally, the extreme gradient boosting model is used to predict the ionic conductivity of ionic liquids from all the possible combinations of unique cations and anions to identify ionic liquids crossing the ionic conductivity threshold of 2.0 S m −1 . 
    more » « less