skip to main content

Search for: All records

Award ID contains: 1707398

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Humans and other animals demonstrate a remarkable ability to generalize knowledge across distinct contexts and objects during natural behavior. We posit that this ability to generalize arises from a specific representational geometry, that we call abstract and that is referred to as disentangled in machine learning. These abstract representations have been observed in recent neurophysiological studies. However, it is unknown how they emerge. Here, using feedforward neural networks, we demonstrate that the learning of multiple tasks causes abstract representations to emerge, using both supervised and reinforcement learning. We show that these abstract representations enable few-sample learning and reliable generalization on novel tasks. We conclude that abstract representations of sensory and cognitive variables may emerge from the multiple behaviors that animals exhibit in the natural world, and, as a consequence, could be pervasive in high-level brain regions. We also make several specific predictions about which variables will be represented abstractly.

    more » « less
  2. Abstract

    How is information distributed across large neuronal populations within a given brain area? Information may be distributed roughly evenly across neuronal populations, so that total information scales linearly with the number of recorded neurons. Alternatively, the neural code might be highly redundant, meaning that total information saturates. Here we investigate how sensory information about the direction of a moving visual stimulus is distributed across hundreds of simultaneously recorded neurons in mouse primary visual cortex. We show that information scales sublinearly due to correlated noise in these populations. We compartmentalized noise correlations into information-limiting and nonlimiting components, then extrapolate to predict how information grows with even larger neural populations. We predict that tens of thousands of neurons encode 95% of the information about visual stimulus direction, much less than the number of neurons in primary visual cortex. These findings suggest that the brain uses a widely distributed, but nonetheless redundant code that supports recovering most sensory information from smaller subpopulations.

    more » « less
  3. Free, publicly-accessible full text available July 1, 2024
  4. Memories are an important part of how we think, understand the world around us, and plan out future actions. In the brain, memories are thought to be stored in a region called the hippocampus. When memories are formed, neurons store events that occur around the same time together. This might explain why often, in the brains of animals, the activity associated with retrieving memories is not just a snapshot of what happened at a specific moment-- it can also include information about what the animal might experience next. This can have a clear utility if animals use memories to predict what they might experience next and plan out future actions. Mathematically, this notion of predictiveness can be summarized by an algorithm known as the successor representation. This algorithm describes what the activity of neurons in the hippocampus looks like when retrieving memories and making predictions based on them. However, even though the successor representation can computationally reproduce the activity seen in the hippocampus when it is making predictions, it is unclear what biological mechanisms underpin this computation in the brain. Fang et al. approached this problem by trying to build a model that could generate the same activity patterns computed by the successor representation using only biological mechanisms known to exist in the hippocampus. First, they used computational methods to design a network of neurons that had the biological properties of neural networks in the hippocampus. They then used the network to simulate neural activity. The results show that the activity of the network they designed was able to exactly match the successor representation. Additionally, the data resulting from the simulated activity in the network fitted experimental observations of hippocampal activity in Tufted Titmice. One advantage of the network designed by Fang et al. is that it can generate predictions in flexible ways,. That is, it canmake both short and long-term predictions from what an individual is experiencing at the moment. This flexibility means that the network can be used to simulate how the hippocampus learns in a variety of cognitive tasks. Additionally, the network is robust to different conditions. Given that the brain has to be able to store memories in many different situations, this is a promising indication that this network may be a reasonable model of how the brain learns. The results of Fang et al. lay the groundwork for connecting biological mechanisms in the hippocampus at the cellular level to cognitive effects, an essential step to understanding the hippocampus, as well as its role in health and disease. For instance, their network may provide a concrete approach to studying how disruptions to the ways neurons make and break connections can impair memory formation. More generally, better models of the biological mechanisms involved in making computations in the hippocampus can help scientists better understand and test out theories about how memories are formed and stored in the brain. 
    more » « less
  5. Soltani, Alireza (Ed.)
    Feedforward network models performing classification tasks rely on highly convergent output units that collect the information passed on by preceding layers. Although convergent output-unit like neurons may exist in some biological neural circuits, notably the cerebellar cortex, neocortical circuits do not exhibit any obvious candidates for this role; instead they are highly recurrent. We investigate whether a sparsely connected recurrent neural network (RNN) can perform classification in a distributed manner without ever bringing all of the relevant information to a single convergence site. Our model is based on a sparse RNN that performs classification dynamically. Specifically, the interconnections of the RNN are trained to resonantly amplify the magnitude of responses to some external inputs but not others. The amplified and non-amplified responses then form the basis for binary classification. Furthermore, the network acts as an evidence accumulator and maintains its decision even after the input is turned off. Despite highly sparse connectivity, learned recurrent connections allow input information to flow to every neuron of the RNN, providing the basis for distributed computation. In this arrangement, the minimum number of synapses per neuron required to reach maximum memory capacity scales only logarithmically with network size. The model is robust to various types of noise, works with different activation and loss functions and with both backpropagation- and Hebbian-based learning rules. The RNN can also be constructed with a split excitation-inhibition architecture with little reduction in performance. 
    more » « less