skip to main content


Search for: All records

Award ID contains: 1707526

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    ABSTRACT We revisit Bondi accretion – steady-state, adiabatic, spherical gas flow on to a Schwarzschild black hole at rest in an asymptotically homogeneous medium – for stiff polytropic equations of state (EOSs) with adiabatic indices Γ > 5/3. A general relativistic treatment is required to determine their accretion rates, for which we provide exact expressions. We discuss several qualitative differences between results for soft and stiff EOSs – including the appearance of a minimum steady-state accretion rate for EOSs with Γ ≥ 5/3 – and explore limiting cases in order to examine these differences. As an example, we highlight results for Γ = 2, which is often used in numerical simulations to model the EOS of neutron stars. We also discuss a special case with this index, the ultrarelativistic ‘causal’ EOS, P = ρ. The latter serves as a useful limit for the still undetermined neutron star EOS above nuclear density. The results are useful, for example, to estimate the accretion rate on to a mini-black hole residing at the centre of a neutron star. 
    more » « less
  3. ABSTRACT We study effects of heating by dark matter (DM) annihilation on black hole gas accretion. We observe that, for reasonable assumptions about DM densities in spikes around supermassive black holes, as well as DM masses and annihilation cross-sections within the standard WIMP model, heating by DM annihilation may have an appreciable effect on the accretion on to Sgr A* in the Galactic Centre. Motivated by this observation we study the effects of such heating on Bondi accretion, i.e. spherically symmetric, steady-state Newtonian accretion on to a black hole. We consider different adiabatic indices for the gas, and different power-law exponents for the DM density profile. We find that typical transonic solutions with heating have a significantly reduced accretion rate. However, for many plausible parameters, transonic solutions do not exist, suggesting a breakdown of the underlying assumptions of steady-state Bondi accretion. Our findings indicate that heating by DM annihilation may play an important role in the accretion onto supermassive black holes at the centre of galaxies, and may help explain the low accretion rate observed for Sgr A*. 
    more » « less