skip to main content


Search for: All records

Award ID contains: 1707878

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Emergence of fundamental forces from gauge symmetry is among our most profound insights about the physical universe. In nature, such symmetries remain hidden in the space of internal degrees of freedom of subatomic particles. Here we propose a way to realize and study gauge structures in real space, manifest in external degrees of freedom of quantum states. We present a model based on a ring-shaped lattice potential, which allows for both Abelian and non-Abelian constructs. Non trivial Wilson loops are shown possible via physical motion of the system. The underlying physics is based on the close analogy of geometric phase with gauge potentials that has been utilized to create synthetic gauge fields with internal states of ultracold atoms. By scaling up to an array with spatially varying parameters, a discrete gauge field can be realized in position space, and its dynamics mapped over macroscopic size and time scales.

     
    more » « less
  2. null (Ed.)
    We consider ultracold atoms trapped in a toroidal trap with an azimuthal lattice for utility as a macroscopic simulator of quantum optics phenomena. We examine the dynamics induced by the adiabatic introduction of the lattice that serves to couple the normal modes as an analog of a laser field coupling electronic states. The system is found to display two distinct behaviors, manifest in the angular momentum—coherent oscillation and self-trapping—reminiscent of nonlinear dynamics yet not requiring interatomic interactions. The choice is set by the interplay of discrete parameters, the specific initial mode, and the periodicity of the lattice. However, rotation can cause continuous transition between the two regimes, causing periodic quenches and revivals in the oscillations as a function of the angular velocity. Curiously, the impact of rotation is determined entirely by the energy spectrum in the absence of the lattice, a feature that can be attributed to adiabaticity. We assess the effects of varying the lattice parameters and consider applications in rotation sensing. 
    more » « less
  3. The degree of localization of the Harper-Hofstadter model is shown to display striking periodic dependence on phase degrees of freedom, which can depend on the nature of the boundary condition, reminiscent of the Aharonov-Bohm effect. In the context of implementation in a finite ring-shaped lattice structure, this phase dependence can be utilized as a fundamentally different principle for precision sensing of rotation and magnetic fields based on localization rather than on interferometry. 
    more » « less