skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1708023

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Continuous-variable quantum-computing is the most scalable implementation of QC to date but requires non-Gaussian resources to allow exponential speedup and quantum correction, using error encoding such as Gottesman–Kitaev–Preskill (GKP) states. However, GKP state generation is still an experimental challenge. We show theoretically that photon catalysis, the interference of coherent states with single-photon states followed by photon-number-resolved detection, is a powerful enabler for non-Gaussian quantum state engineering such as exactly displaced single-photon states andM-symmetric superpositions of squeezed vacuum (SSV), including squeezed cat states (M= 2). By including photon-counting based state breeding, we demonstrate the potential to enlarge SSV states and produce GKP states.

     
    more » « less
  2. null (Ed.)