- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Miller, Kevin M. (4)
-
Johnson, R. Daniel (2)
-
Bara, Jason E. (1)
-
Bontrager, Nicholas C. (1)
-
Bratton, Abigail F. (1)
-
Daymon, Samantha P. (1)
-
Ellison, Christopher J. (1)
-
Kim, Sung-Soo (1)
-
Lindenmeyer, Katelyn M. (1)
-
O’Harra, Kathryn E. (1)
-
Radomski, Samantha (1)
-
Timmermann, George M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bontrager, Nicholas C.; Radomski, Samantha; Daymon, Samantha P.; Johnson, R. Daniel; Miller, Kevin M. (, Polymer)null (Ed.)
-
Lindenmeyer, Katelyn M.; Johnson, R. Daniel; Miller, Kevin M. (, Polymer Chemistry)Poly(ionic liquid) covalently adaptable networks containing thermoreversible furan–maleimide linkages were prepared and characterized for their thermal, mechanical and conductive properties. Self-healing behaviour was initially evaluated using oscillatory rheology where a G ′/ G ′′ crossover temperature of ∼110 °C was observed. Anhydrous conductivities, as determined by dielectric relaxation spectroscopy, were found to be on the order of 10 −8 S cm −1 at 30 °C. Recovery of >70% of the original stress and strain at break was found within 2 hours at 105 °C as determined from tensile testing experiments, with breakage occurring at a new point on the film. Recovery of conductivity was completed utilizing chronoamperometric cycling whereby >75% of the original current was recovered within two hours at 110 °C.more » « less
-
Bratton, Abigail F.; Kim, Sung-Soo; Ellison, Christopher J.; Miller, Kevin M. (, Industrial & Engineering Chemistry Research)
An official website of the United States government
