skip to main content


Search for: All records

Award ID contains: 1708773

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    19F NMR spectroscopy is an attractive and growing area of research with broad applications in biochemistry, chemical biology, medicinal chemistry, and materials science. We have explored fast magic angle spinning (MAS)19F solid‐state NMR spectroscopy in assemblies of HIV‐1 capsid protein. Tryptophan residues with fluorine substitution at the 5‐position of the indole ring were used as the reporters. The19F chemical shifts for the five tryptophan residues are distinct, reflecting differences in their local environment. Spin‐diffusion and radio‐frequency‐driven‐recoupling experiments were performed at MAS frequencies of 35 kHz and 40–60 kHz, respectively. Fast MAS frequencies of 40–60 kHz are essential for consistently establishing19F–19F correlations, yielding interatomic distances of the order of 20 Å. Our results demonstrate the potential of fast MAS19F NMR spectroscopy for structural analysis in large biological assemblies.

     
    more » « less
  2. null (Ed.)