skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1708792

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we analyze the spatiotemporal mean field model developed by Liley et al. [1] in order to advance our understanding of the wide effects of pharmacological agents and anesthetics. Specifically, we use the spatiotemporal mean field model in [1] for capturing the electrical activity in the neocortex to computationally study the emergence of α- and gamma-band rhythmic activity in the brain. We show that a oscillations in the solutions of the model appear globally across the neocortex, whereas gamma oscillations can emerge locally as a result of a bifurcation in the dynamics of the model. We solve the dynamic equations of the model using a finite element solver package and show that our results verify the predictions made by bifurcation analysis. 
    more » « less
  2. In this paper, we analyze the spatiotemporal mean field model developed by Liley et al. in order to advance our understanding of the wide effects of pharmacological agents and anesthetics. Specifically, we use the spatiotemporal mean field model for capturing the electrical activity in the neocortex to computationally study the emergence of α - and γ -band rhythmic activity in the brain. We show that α oscillations in the solutions of the model appear globally across the neocortex, whereas γ oscillations can emerge locally as a result of a bifurcation in the dynamics of the model. We solve the dynamic equations of the model using a finite element solver package and show that our results verify the predictions made by bifurcation analysis. 
    more » « less