skip to main content


Search for: All records

Award ID contains: 1708991

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Above‐equilibrium “hot”‐carrier generation in metals is a promising route to convert photons into electrical charge for efficient near‐infrared optoelectronics. However, metals that offer both hot‐carrier generation in the near‐infrared and sufficient carrier lifetimes remain elusive. Alloys can offer emergent properties and new design strategies compared to pure metals. Here, it is shown that a noble‐transition alloy, AuxPd1−x, outperforms its constituent metals concerning generation and lifetime of hot carriers when excited in the near‐infrared. At optical fiber wavelengths (e.g., 1550 nm), Au50Pd50provides a 20‐fold increase in the number of ≈0.8 eV hot holes, compared to Au, and a threefold increase in the carrier lifetime, compared to Pd. The discovery that noble‐transition alloys can excel at hot‐carrier generation reveals a new material platform for near‐infrared optoelectronic devices.

     
    more » « less
  2. Investigation of charge transfer in quantum dot (QD) systems is an area of great interest. Specifically, the relationship between capping ligand and rate of charge transfer has been studied as a means to optimize these materials. To investigate the role of ligand interaction on the QD surface for electron transfer, we designed and synthesized a series of ligands containing an electron accepting moiety, naphthalene bisimide (NBI). These ligands differ in their steric bulk: as one allows for π–π stacking between the NBI moieties at high surface coverages, while the other does not, allowing for a direct comparison of these effects. Once grafted onto QDs, these hybrid materials were studied using UV-Vis, fluorescence, and transient absorption spectroscopy. Interestingly, the sample with the fastest electron transfer was not the sample with the most NBI π–π stacking, it was instead where these ligands were mixed amongst oleic acid, breaking up H-aggregates between the NBI groups. 
    more » « less