skip to main content

Search for: All records

Award ID contains: 1709229

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Previous high-resolution angle-resolved photoemission (ARPES) studies of URu2Si2have characterized the temperature-dependent behavior of narrow-band states close to the Fermi level (EF) at low photon energies near the zone center, with an emphasis on electronic reconstruction due to Brillouin zone folding. A substantial challenge to a proper description is that these states interact with other hole-band states that are generally absent from bulk-sensitive soft x-ray ARPES measurements. Here we provide a more globalk-space context for the presence of such states and their relation to the bulk Fermi surface (FS) topology using synchrotron-based wide-angle and photon energy-dependent ARPES mapping of the electronic structure using photon energies intermediate between the low-energy regime and the high-energy soft x-ray regime. Small-spot spatial dependence,f-resonant photoemission, Si 2pcore-levels, x-ray polarization, surface-dosing modification, and theoretical surface slab calculations are employed to assist identification of bulk versus surface state character of theEF-crossing bands and their relation to specific U- or Si-terminations of the cleaved surface. The bulk FS topology is critically compared to density functional theory (DFT) and to dynamical mean field theory calculations. In addition to clarifying some aspects of the previously measured high symmetry Γ,ZandXpoints, incommensurate 0.6a* nested Fermi-edge states located alongZNZare found to be distinctlymore »different from the DFT FS prediction. The temperature evolution of these states aboveTHO, combined with a more detailed theoretical investigation of this region, suggests a key role of theN-point in the hidden order transition.

    « less
  2. Abstract We calculate the single-particle excitation spectrum and the Landau liquid parameters for the archetypal model of solids, the three-dimensional uniform electron gas, with the variational diagrammatic Monte Carlo method, which gives numerically controlled results without systematic error. In the metallic range of density, we establish benchmark values for the wave-function renormalization factor Z , the effective mass $$m^*/m$$ m ∗ / m , and the Landau parameters $$F_0^s$$ F 0 s and $$F_0^a$$ F 0 a with unprecedented accuracy, and we resolve the long-standing puzzle of non-monotonic dependence of mass on density. We also exclude the possibility that experimentally measured large reduction of bandwidth in Na metal can originate from the charge and spin fluctuations contained in the model of the uniform electron gas.
    Free, publicly-accessible full text available December 1, 2023
  3. Free, publicly-accessible full text available August 1, 2023