skip to main content

Search for: All records

Award ID contains: 1709255

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tomographic spectroscopy reveals how the properties of topological materials can be engineered at interfaces.
    Free, publicly-accessible full text available February 4, 2023
  2. Abstract Superconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendipity, has been a long sought-after goal in condensed matter physics and materials science, but achieving this objective may require new tools, techniques and approaches. Here, we report the transmutation of a normal metal into a superconductor through the application of epitaxial strain. We demonstrate that synthesizing RuOmore »2 thin films on (110)-oriented TiO 2 substrates enhances the density of states near the Fermi level, which stabilizes superconductivity under strain, and suggests that a promising strategy to create new transition-metal superconductors is to apply judiciously chosen anisotropic strains that redistribute carriers within the low-energy manifold of d orbitals.« less
    Free, publicly-accessible full text available December 1, 2022
  3. Free, publicly-accessible full text available July 1, 2022
  4. null (Ed.)
  5. null (Ed.)
  6. The use of renewable electricity to prepare materials and fuels from abundant molecules offers a tantalizing opportunity to address concerns over energy and materials sustainability. The oxygen evolution reaction (OER) is integral to nearly all material and fuel electrosyntheses. However, very little is known about the structural evolution of the OER electrocatalyst, especially the amorphous layer that forms from the crystalline structure. Here, we investigate the interfacial transformation of the SrIrO 3 OER electrocatalyst. The SrIrO 3 amorphization is initiated by the lattice oxygen redox, a step that allows Sr 2+ to diffuse and O 2− to reorganize the SrIrOmore »3 structure. This activation turns SrIrO 3 into a highly disordered Ir octahedral network with Ir square-planar motif. The final Sr y IrO x exhibits a greater degree of disorder than IrO x made from other processing methods. Our results demonstrate that the structural reorganization facilitated by coupled ionic diffusions is essential to the disordered structure of the SrIrO 3 electrocatalyst.« less