skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1709458

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. abstract: We prove existence, uniqueness and regularity of solutions to the Einstein vacuum equations taking the form $$ {}^{(4)}g = -dt^2 + \sum_{i,j=1}^3 a_{ij}t^{2 p_{\max\{i,j\}}}\,{\rm d} x^i\,{\rm d} x^j $$ on $$(0,T]_t\times\Bbb{T}^3_x$$, where $$a_{ij}(t,x)$$ and $$p_i(x)$$ are regular functions without symmetry or analyticity assumptions. These metrics are singular and asymptotically Kasner-like as $$t\to 0^+$$. These solutions are expected to be highly non-generic, and our construction can be viewed as solving a singular initial value problem with Fuchsian-type analysis where the data are posed on the ``singular hypersurface'' $$\{t=0\}$$. This is the first such result without imposing symmetry or analyticity. To carry out the analysis, we study the problem in a synchronized coordinate system. In particular, we introduce a novel way to perform (weighted) energy estimates in such a coordinate system based on estimating the second fundamental forms of the constant-$$t$$ hypersurfaces. 
    more » « less