skip to main content


Search for: All records

Award ID contains: 1709987

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Magnetic van der Waals (vdW) materials are the centerpiece of atomically thin devices with spintronic and optoelectronic functions. Exploring new chemistry paths to tune their magnetic and optical properties enables significant progress in fabricating heterostructures and ultracompact devices by mechanical exfoliation. The key parameter to sustain ferromagnetism in 2D is magnetic anisotropy—a tendency of spins to align in a certain crystallographic direction known as easy‐axis. In layered materials, two limits of easy‐axis are in‐plane (XY) and out‐of‐plane (Ising). Light polarization and the helicity of topological states can couple to magnetic anisotropy with promising photoluminescence or spin‐orbitronic functions. Here, a unique experiment is designed to control the easy‐axis, the magnetic transition temperature, and the optical gap simultaneously in a series of CrCl3−xBrxcrystals between CrCl3withXYand CrBr3with Ising anisotropy. The easy‐axis is controlled between the two limits by varying spin–orbit coupling with the Br content in CrCl3−xBrx. The optical gap, magnetic transition temperature, and interlayer spacing are all tuned linearly withx. This is the first report of controlling exchange anisotropy in a layered crystal and the first unveiling of mixed halide chemistry as a powerful technique to produce functional materials for spintronic devices.

     
    more » « less
  2. Van der Waals (vdW) materials with magnetic order have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far, they are mainly insulating or semiconducting, and none of them has a high electronic mobility—a property that is rare in layered vdW materials in general. The realization of a high-mobility vdW material that also exhibits magnetic order would open the possibility for novel magnetic twistronic or spintronic devices. Here, we report very high carrier mobility in the layered vdW antiferromagnet GdTe 3 . The electron mobility is beyond 60,000 cm 2 V −1 s −1 , which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe 3 is comparable to that of black phosphorus. By mechanical exfoliation, we further demonstrate that GdTe 3 can be exfoliated to ultrathin flakes of three monolayers. 
    more » « less