skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1710110

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. As surface ligands play a critical role in the colloidal stability and optoelectronic properties of semiconductor nanocrystals, we used solution NMR experiments to investigate the surface coordination chemistry of Ge nanocrystals synthesized by a microwave-assisted reduction of GeI 2 in oleylamine. The as-synthesized Ge nanocrystals are coordinated to a fraction of strongly bound oleylamide ligands (with covalent X-type Ge–NHR bonds) and a fraction of more weakly bound (or physisorbed) oleylamine, which readily exchanges with free oleylamine in solution. The fraction of strongly bound oleylamide ligands increases with increasing synthesis temperature, which also correlates with better colloidal stability. Thiol and carboxylic acid ligands bind to the Ge nanocrystal surface only upon heating, suggesting a high kinetic barrier to surface binding. These incoming ligands do not displace native oleylamide ligands but instead appear to coordinate to open surface sites, confirming that the as-prepared nanocrystals are not fully passivated. These findings will allow for a better understanding of the surface chemistry of main group nanocrystals and the conditions necessary for ligand exchange to ultimately maximize their functionality. 
    more » « less
  4. Recent experimental and theoretical work has demonstrated significant potential to tune the properties of silicon and germanium by adjusting the mesostructure, nanostructure, and/or crystalline structure of these group 14 elements. Despite the promise to achieve enhanced functionality with these already technologically important elements, a significant challenge lies in the identification of effective synthetic approaches that can access metastable silicon and germanium-based extended solids with a particular crystal structure or specific nano/meso-structured features. In this context, the class of intermetallic compounds known as Zintl phases has provided a platform for discovery of novel silicon and germanium-based materials. This review highlights some of the ways in which silicon and germanium-based Zintl phases have been utilized as precursors in innovative approaches to synthesize new crystalline modifications, nanoparticles, nanosheets, and mesostructured and nanoporous extended solids with properties that can be very different from the ground states of the elements. 
    more » « less