Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2023
-
Telescope Array (TA) is the largest ultrahigh energy cosmic-ray (UHECR) observatory in the Northern Hemisphere. It explores the origin of UHECRs by measuring their energy spectrum, arrival-direction distribution, and mass composition using a surface detector (SD) array covering approximately 700 km and fluorescence detector (FD) stations. TA has found evidence for a cluster of cosmic rays with energies greater than 57 EeV. In order to confirm this evidence with more data, it is necessary to increase the data collection rate. We have begun building an expansion of TA that we call TAx4. In this paper, we explain the motivation, design,more »Free, publicly-accessible full text available December 11, 2022
-
The Cosmic-Ray Composition between 2 PeV and 2 EeV Observed with the TALE Detector in Monocular ModeWe report on a measurement of the cosmic-ray composition by the Telescope Array Low-energy Extension (TALE) air fluorescence detector (FD). By making use of the Cherenkov light signal in addition to air fluorescence light from cosmic-ray (CR)-induced extensive air showers, the TALE FD can measure the properties of the cosmic rays with energies as low as ~2 PeV and exceeding 1 EeV. In this paper, we present results on the measurement of ${X}_{\max }$ distributions of showers observed over this energy range. Data collected over a period of ~4 yr were analyzed for this study. The resulting ${X}_{\max }$ distributionsmore »
-
Ultra-high-energy (UHE) photons are an important tool for studying the high-energy Universe. A plausible source of photons with exa-eV (EeV) energy is provided by UHE cosmic rays (UHECRs) undergoing the Greisen–Zatsepin–Kuzmin process (Greisen 1966; Zatsepin & Kuzmin 1966) or pair production process (Blumenthal 1970) on a cosmic background radiation. In this context, the EeV photons can be a probe of both UHECR mass composition and the distribution of their sources (Gelmini, Kalashev & Semikoz 2008; Hooper, Taylor & Sarkar 2011). At the same time, the possible flux of photons produced by UHE protons in the vicinity of their sources bymore »