Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract We revisit a singular value decomposition (SVD) algorithm given in Chen et al. (Psychometrika 84:124–146, 2019b) for exploratory item factor analysis (IFA). This algorithm estimates a multidimensional IFA model by SVD and was used to obtain a starting point for joint maximum likelihood estimation in Chen et al. (2019b). Thanks to the analytic and computational properties of SVD, this algorithm guarantees a unique solution and has computational advantage over other exploratory IFA methods. Its computational advantage becomes significant when the numbers of respondents, items, and factors are all large. This algorithm can be viewed as a generalization of principal component analysis to binary data. In this note, we provide the statistical underpinning of the algorithm. In particular, we show its statistical consistency under the same double asymptotic setting as in Chen et al. (2019b). We also demonstrate how this algorithm provides a scree plot for investigating the number of factors and provide its asymptotic theory. Further extensions of the algorithm are discussed. Finally, simulation studies suggest that the algorithm has good finite sample performance.more » « less
-
Abstract Partial differential equations are powerful tools for used to characterizing various physical systems. In practice, measurement errors are often present and probability models are employed to account for such uncertainties. In this paper we present a Monte Carlo scheme that yields unbiased estimators for expectations of random elliptic partial differential equations. This algorithm combines a multilevel Monte Carlo method (Giles (2008)) and a randomization scheme proposed by Rhee and Glynn (2012), (2013). Furthermore, to obtain an estimator with both finite variance and finite expected computational cost, we employ higher-order approximations.more » « less
An official website of the United States government
