skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1712793

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Dispersive shock waves (DSWs) of the defocusing radial nonlinear Schrödinger (rNLS) equation in two spatial dimensions are studied. This equation arises naturally in Bose‐Einstein condensates, water waves, and nonlinear optics. A unified nonlinear WKB approach, equally applicable to integrable or nonintegrable partial differential equations, is used to find the rNLS Whitham modulation equation system in both physical and hydrodynamic type variables. The description of DSWs obtained via Whitham theory is compared with direct rNLS numerics; the results demonstrate very good quantitative agreement. On the other hand, as expected, comparison with the corresponding DSW solutions of the one‐dimensional NLS equation exhibits significant qualitative and quantitative differences. 
    more » « less
  2. null (Ed.)
    The semi-classical Korteweg–de Vries equation for step-like data is considered with a small parameter in front of the highest derivative. Using perturbation analysis, Whitham theory is constructed to the higher order. This allows the order one phase and the complete leading-order solution to be obtained; the results are confirmed by extensive numerical calculations. 
    more » « less