skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1712962

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a strategy for computing estimators in some non-standard M-estimation problems, where the data are distributed across different servers and the observations across servers, though independent, can come from heterogeneous sub-populations, thereby violating the identically distributed assumption. Our strategy fixes the super-efficiency phenomenon observed in prior work on distributed computing in (i) the isotonic regression framework, where averaging several isotonic estimates (each computed at a local server) on a central server produces super-efficient estimates that do not replicate the properties of the global isotonic estimator, i.e. the isotonic estimate that would be constructed by transferring all the data to a single server, and (ii) certain types of M-estimation problems involving optimization of discontinuous criterion functions where M-estimates converge at the cube-root rate. The new estimators proposed in this paper work by smoothing the data on each local server, communicating the smoothed summaries to the central server, and then solving a non-linear optimization problem at the central server. They are shown to replicate the asymptotic properties of the corresponding global estimators, and also overcome the super-efficiency phenomenon exhibited by existing estimators. 
    more » « less
  2. Inference for high-dimensional models is challenging as regular asymptotic the- ories are not applicable. This paper proposes a new framework of simultaneous estimation and inference for high-dimensional linear models. By smoothing over par- tial regression estimates based on a given variable selection scheme, we reduce the problem to a low-dimensional least squares estimation. The procedure, termed as Selection-assisted Partial Regression and Smoothing (SPARES), utilizes data split- ting along with variable selection and partial regression. We show that the SPARES estimator is asymptotically unbiased and normal, and derive its variance via a non- parametric delta method. The utility of the procedure is evaluated under various simulation scenarios and via comparisons with the de-biased LASSO estimators, a major competitor. We apply the method to analyze two genomic datasets and obtain biologically meaningful results. 
    more » « less