- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Khardon, R. (1)
-
Khardon, Roni (1)
-
Sheth, R (1)
-
Sheth, Rishit (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose that approximate Bayesian algorithms should optimize a new criterion, directly derived from the loss, to calculate their approximate posterior which we refer to as pseudo-posterior. Unlike standard variational inference which optimizes a lower bound on the log marginal likelihood, the new algorithms can be analyzed to provide loss guarantees on the predictions with the pseudo-posterior. Our criterion can be used to derive new sparse Gaussian process algorithms that have error guarantees applicable to various likelihoods.more » « less
-
Sheth, Rishit; Khardon, Roni (, Advances in neural information processing systems)Bayesian models are established as one of the main successful paradigms for complex problems in machine learning. To handle intractable inference, research in this area has developed new approximation methods that are fast and effective. However, theoretical analysis of the performance of such approximations is not well developed. The paper furthers such analysis by providing bounds on the excess risk of variational inference algorithms and related regularized loss minimization algorithms for a large class of latent variable models with Gaussian latent variables. We strengthen previous results for variational algorithms by showing they are competitive with any point-estimate predictor. Unlike previous work, we also provide bounds on the risk of the \emph{Bayesian} predictor and not just the risk of the Gibbs predictor for the same approximate posterior. The bounds are applied in complex models including sparse Gaussian processes and correlated topic models. Theoretical results are complemented by identifying novel approximations to the Bayesian objective that attempt to minimize the risk directly. An empirical evaluation compares the variational and new algorithms shedding further light on their performance.more » « less
An official website of the United States government

Full Text Available