Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Proliferation of multidrug-resistant (MDR) bacteria poses a threat to human health, requiring new strategies. Here we propose using fitness neutral gene expression perturbations to potentiate antibiotics. We systematically explored 270 gene knockout-antibiotic combinations inEscherichia coli, identifying 90 synergistic interactions. Identified gene targets were subsequently tested for antibiotic synergy on the transcriptomic level via multiplexed CRISPR-dCas9 and showed successful sensitization ofE. coliwithout a separate fitness cost. These fitness neutral gene perturbations worked as co-therapies in reducing aSalmonella entericaintracellular infection in HeLa. Finally, these results informed the design of four antisense peptide nucleic acid (PNA) co-therapies,csgD,fnr,recAandacrA, against four MDR, clinically isolated bacteria. PNA combined with sub-minimal inhibitory concentrations of trimethoprim against two isolates ofKlebsiella pneumoniaeandE. colishowed three cases of re-sensitization with minimal fitness impacts. Our results highlight a promising approach for extending the utility of current antibiotics.more » « less
An official website of the United States government
