skip to main content


Search for: All records

Award ID contains: 1714829

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Junggar and Turpan basins of Xinjiang, northwest China, host a well-preserved terrestrial Permo-Triassic boundary sequence exposed on the flanks of the Bogda Mountains. During the Permo-Triassic, this region was located in mid-latitude northeast Pangaea (~45°N), making it an important comparison to the higher latitude record preserved in the South African Karoo Basin (~60°S). Broad similarities exist between the tetrapod records of both areas, such as the reported co-occurrence of Dicynodon-grade dicynodontoids and Lystrosaurus in the upper Permian and the high abundance of Lystrosaurus in the Lower Triassic. In the Bogda sections, the Permo-Triassic boundary falls within the upper Guodikeng Formation (= upper Wutonggou low order cycle), but several horizons have been proposed based on biostratigraphy, chemostratigraphy, and paleomagnetic data. A new Bayesian age model calibrated by multiple radiometric dates and tied to detailed litho- and cyclostratigraphic data offers new insight into the location of the Permo-Triassic boundary in Xinjiang and the opportunity to reconsider tetrapod occurrences in a highly resolved chronostratigraphic framework. We investigated the positions of new and historic tetrapod specimens relative to the revised Permo-Triassic boundary, including uncertainties about the locations of key historic specimens. The stratigraphic range of Dicynodon-grade dicynodontoids in Xinjiang is poorly constrained: most specimens, including the holotype of Jimusaria sinkianensis, cannot be precisely placed relative to the Permo-Triassic boundary. A new specimen of Turfanodon sp. for which we have reliable data occurs in the upper Permian. Despite their previous treatment as Permian in age, most Bogda chroniosuchians were collected in strata above the Permo- Triassic boundary and the therocephalian Dalongkoua fuae also may be Triassic. Some prior placements of the Permo- Triassic boundary in Xinjiang imply an upper Permian lowestoccurrence for Lystrosaurus, but all Lystrosaurus specimens that we can precisely locate fall above the Permo-Triassic boundary. The high abundance of Lystrosaurus in the Early Triassic of Xinjiang likely parallels an Early Triassic age for the interval of greatest Lystrosaurus abundance in the Karoo Basin, but additional research is needed to determine whether there was a single, globally synchronous time of highest Lystrosaurus abundance. 
    more » « less
  2. Global temperatures significantly changed from the late Permian to the Early Triassic: the Earth transformed from a cool world to a hothouse climate. This transition undoubtedly had a strong impact on tetrapod physiology and distribution. During the global cooling, tetrapods generally increased their size; and the currently recognized late Permian tetrapod extinction, exemplified by the record preserved in the South African Karoo Basin, occurred in the late stage of cooling. Rapid warming in the Early Triassic is predicted to have resulted in extinctions and/or local extirpation of low latitude tetrapods, but the very limited fossil record from this region makes testing this hypothesis difficult. Warming is predicted to have had less negative impacts on the tetrapod diversity of mid-latitudes, and promoted the success of tetrapods in the high latitudes. Based on the known fossil record, a tetrapod gap could have existed in central Pangea between ~30◦ N and ~ 40◦S, and lasting from the Induan to the early Spathian. However, the exact boundaries of this gap likely varied over time, and it could have encompassed a larger area during the hottest phases (Griesbachian and near the Smithian–Spathain boundary). 
    more » « less
  3. Lystrosaurus was one of the few tetrapods to survive the Permo-Triassic mass extinction, the most profound biotic crisis in Earth’s history. The wide paleolatitudinal range and high abundance of Lystrosaurus during the Early Triassic provide a unique opportunity to investigate changes in growth dynamics and longevity following the mass extinction, yet most studies have focused only on species that lived in the southern hemisphere. Here, we present the long bone histology from twenty Lystrosaurus skeletal elements spanning a range of sizes that were collected in the Jiucaiyuan Formation of northwestern China. In addition, we compare the average body size of northern and southern Pangean Triassic-aged species and conduct cranial geometric morphometric analyses of southern and northern taxa to begin investigating whether specimens from China are likely to be taxonomically distinct from South African specimens. We demonstrate that Lystrosaurus from China have larger average body sizes than their southern Pangean relatives and that their cranial morphologies are distinctive. The osteohistological examination revealed sustained, rapid osteogenesis punctuated by growth marks in some, but not all, immature individuals from China. We find that the osteohistology of Chinese Lystrosaurus shares a similar growth pattern with South African species that show sustained growth until death. However, bone growth arrests more frequently in the Chinese sample. Nevertheless, none of the long bones sam pled here indicate that maximum or asymptotic size was reached, suggesting that the maxi mum size of Lystrosaurus from the Jiucaiyuan Formation remains unknown. 
    more » « less
  4. The narrow active temperature ranges of ectothermic tetrapods can be used as proxies for reconstructing paleoclimates. Here we deduce the climatic preferences of major Permo-Triassic tetrapod groups based on their known geographic distributions, the critical thermal limits of living tetrapods, and paleoclimate information from other sources. The resulting preferred temperature sequence of amniotes places most Triassic archosauromorphs at the high end of the spectrum, with preferred temperatures over 32 ◦ C in some cases, followed by captorhinids, pareiasaurs, procolophonids, cynognathian cynodonts, dicynodonts (excluding Lystrosaurus), Proterosuchus fergusi, and finally Lystrosaurus at the lowest preferred temperature. The poleward distribution of Permian Lystrosaurus marks the border of cool temperate climates, whereas Triassic Lystrosaurus delineates the border of the arid zone. Most temnospondyls indicate the availability of perennial water sources. Captorhinids and pareiasaurs preferred dry climates, whereas dicynodonts preferred wetter conditions. Based on current evidence, central Pangea transitioned from an arid zone to a tropical zone during the late Olenekian. 
    more » « less
  5. Stratigraphic sections in the Bogda Mountains, NW China, provide detailed records of late Permian–Early Triassic terrestrial paleoenvironmental and paleoclimatic evolution at the paleo-mid-latitude of NE Pangea. The sections are located in the Tarlong-Taodonggou, Dalongkou, and Zhaobishan areas, ~100 km apart, and ~5000 m in total thickness. An age model was constructed using seven high-resolution U-Pb zircon CA-TIMS dates in the Tarlong-Taodonggou sections and projected to sections in two other areas to convert the litho- and cyclo-stratigraphy into a chronostratigraphy. Sediments were deposited in braided and meandering streams, and lacustrine deltaic and lakeplain-littoral environments. A cyclostratigraphy was established on the basis of repetitive environmental changes for high-order cycles, stacking patterns of high-order cycles, and long-term climatic and tectonic trends for low-order cycles (LC). Sedimentary evidence from the upper Wuchiapingian–mid Induan Wutonggou LC indicates that the climate was generally humid-subhumid and gradually became variable toward a seasonally dry condition in the early Induan. Lush vegetation had persisted across the Permo–Triassic boundary into the early Induan. A subhumid-semiarid condition prevailed during the deposition of mid Induan–lower Olenekian Jiucaiyuan and lower Olenekian Shaofanggou LCs. These three LCs are largely continuous and separated by conformities and diastems. Intra- and inter-graben stratigraphic variability is reflected by variations in thickness, depositional system, and average sedimentation rate, and results in variable spatial and temporal stratigraphic resolution. Such stratigraphic variability is mainly controlled by paleogeographic location, depocenter shift, and episodic uplift and subsidence in the source areas and catchment basin. A changeover of plant communities occurred during the early Induan, postdating the end-Permian marine mass extinction. However, riparian vegetation and upland forests were still present from the mid Induan to early Olenekian, and served as primary food source for terrestrial ecosystems, including vertebrates. Correlation of the vascular plant evolutionary history from the latest Changhsingian to early Induan in the Bogda Mountains with those reported from Australia and south China indicates a diachronous floral changeover on Pangea. The late Permian–Early Triassic litho-, cyclo- and chrono-stratigraphies, constrained by the age model, providesfoundation for future studies on the evolution of continental sedimentary, climatic, biologic, and ecological systems in the Bogda region. It also provides a means to correlate terrestrial events in the mid-paleolatitudes with marine and nonmarine records in the other parts of the world. 
    more » « less
  6. null (Ed.)
  7. The emergence of an ecological community in evolutionary time is the result of species evolution and coevolution. In species rich and functionally diverse communities, there are a multitude of alternative pathways along which emergence could proceed. Nevertheless, analysis of alternative pathways for paleocommunities spanning more than 13 million years of the Permian-Triassic of the Karoo Basin of South Africa, suggests that pathways actually taken represent a small subset of the total available. This leads to a narrow representation of the total number of communities possible given a specific number of species and level of functional diversity. Furthermore, the paleocommunities were always superior to structural alternatives of equal complexity, in terms of community global stability (the number of species that can coexist stably and indefinitely). Such optimization could indicate a selective process during the formation of types of communities, or simply be emergent from the coevolutionary framework. Here we present ongoing work to support an emergent process by which many alternative types of communities may form constantly on ecological timescales, but where few are stable and persistent on longer timescales. This leads to the compositional stability of paleoecological units often noted in the fossil record, and the apparent incumbency of long-lasting lineages. The aftermath of mass extinctions present opportunities to test this hypothesis, because previously persistent communities are replaced by newly emergent ones, and the emergence process itself can be extended to geological timescales because of ongoing environmental instability, and the time required for the reformation of coevolutionary relationships and functional structures. Such is the case in the aftermath of the Permian-Triassic mass extinction, when Early Triassic paleocommunities in the Karoo Basin were sub-optimal compared to alternative, hypothetical histories. Understanding long-term ecological persistence is crucial to our understanding of the modern anthropogenically-driven environmental crisis. Modern ecosystems are the documented products of geological and evolutionary history. Species acclimatization and adaptation to ongoing changes are not necessarily guarantees of the future persistence of the resulting reorganized systems. It will become critical to determine if the biosphere has already turned down new ecological and evolutionary pathways, or is still operating in the capacity of the pre-Anthropocene system. 
    more » « less