skip to main content


Search for: All records

Award ID contains: 1715140

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, redistributing material throughout the circumgalatic medium. Non-thermal feedback from galactic cosmic rays (CRs) – high-energy charged particles accelerated in supernovae and young stars – can impact the efficiency of wind driving. The streaming instability limits the speed at which they can escape. However, in the presence of turbulence, the streaming instability is subject to suppression that depends on the magnetization of turbulence given by its Alfvén Mach number. While previous simulations that relied on a simplified model of CR transport have shown that super-Alfvénic streaming of CRs enhances galactic winds, in this paper we take into account a realistic model of streaming suppression. We perform three-dimensional magnetohydrodynamic simulations of a section of a galactic disc and find that turbulent damping dependent on local magnetization of turbulent interstellar medium (ISM) leads to more spatially extended gas and CR distributions compared to the earlier streaming calculations, and that scale heights of these distributions increase for stronger turbulence. Our results indicate that the star formation rate increases with the level of turbulence in the ISM. We also find that the instantaneous wind mass loading is sensitive to local streaming physics with the mass loading dropping significantly as the strength of turbulence increases.

     
    more » « less
  2. Abstract Transport equations for electron thermal energy in the high- β e intracluster medium (ICM) are developed that include scattering from both classical collisions and self-generated whistler waves. The calculation employs an expansion of the kinetic electron equation along the ambient magnetic field in the limit of strong scattering and assumes whistler waves with low phase speeds V w ∼ v te / β e ≪ v te dominate the turbulent spectrum, with v te the electron thermal speed and β e ≫ 1 the ratio of electron thermal to magnetic pressure. We find: (1) temperature-gradient-driven whistlers dominate classical scattering when L c > L / β e , with L c the classical electron mean free path and L the electron temperature scale length, and (2) in the whistler-dominated regime the electron thermal flux is controlled by both advection at V w and a comparable diffusive term. The findings suggest whistlers limit electron heat flux over large regions of the ICM, including locations unstable to isobaric condensation. Consequences include: (1) the Field length decreases, extending the domain of thermal instability to smaller length scales, (2) the heat flux temperature dependence changes from T e 7 / 2 / L to V w nT e ∼ T e 1 / 2 , (3) the magneto-thermal- and heat-flux-driven buoyancy instabilities are impaired or completely inhibited, and (4) sound waves in the ICM propagate greater distances, as inferred from observations. This description of thermal transport can be used in macroscale ICM models. 
    more » « less
  3. ABSTRACT Black hole feedback plays a central role in shaping the circumgalactic medium (CGM) of elliptical galaxies. We systematically study the impact of plasma physics on the evolution of ellipticals by performing three-dimensional non-ideal magnetohydrodynamic simulations of the interactions of active galactic nucleus (AGN) jets with the CGM including magnetic fields, and cosmic rays (CRs) and their transport processes. We find that the physics of feedback operating on large galactic scales depends very sensitively on plasma physics operating on small scales. Specifically, we demonstrate that (i) in the purely hydrodynamical case, the AGN jets initially maintain the atmospheres in global thermal balance. However, local thermal instability generically leads to the formation of massive cold discs in the vicinity of the central black hole in disagreement with observations; (ii) including weak magnetic fields prevents the formation of the discs because local B-field amplification in the precipitating cold gas leads to strong magnetic breaking, which quickly extracts angular momentum from the accreting clouds. The magnetic fields transform the cold clouds into narrow filaments that do not fall ballistically; (iii) when plasma composition in the AGN jets is dominated by CRs, and CR transport is neglected, the atmospheres exhibit cooling catastrophes due to inefficient heat transfer from the AGN to CGM despite Coulomb/hadronic CR losses being present; (iv) including CR streaming and heating restores agreement with the observations, i.e. cooling catastrophes are prevented and massive cold central discs do not form. The AGN power is reduced as its energy is utilized efficiently. 
    more » « less