skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1716156

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This study presents a numerical investigation of the source aspect ratio (AR) influence on tsunami decay characteristics with an emphasis in near and far-field differences for two initial wave shapes Pure Positive Wave and N-wave. It is shown that, when initial total energy for both tsunami types is kept the same, short-rupture tsunami with more concentrated energy are likely to be more destructive in the near-field, whereas long rupture tsunami are more dangerous in the far-field. The more elongated the source is, the stronger the directivity and the slower the amplitude decays in the intermediate- and far-fields. We present evidence of this behavior by comparing amplitude decay rates from idealized sources and showing their correlation with that observed in recent historical events of similar AR. 
    more » « less
  2. null (Ed.)
    An ocean swell refers to a train of periodic or nearly periodic waves. The wave train can propagate on the free surface of a body of water over very long distances. A great deal of the current study in the dynamics of water waves is focused on ocean swells. These swells are typically created initially in the neighborhood of an ocean storm, and then the swell propagates away from the storm in all directions. We consider a different kind of wave, called seas, which are created by and driven entirely by wind. These waves typically have no periodicity, and can rise and fall with changes in the wind. Specifically, this is a two-fluid problem, with air above a moveable interface, and water below it. We focus on the local dynamics at the air-water interface. Various properties at this locality have implications on the waves as a whole, such as pressure differentials and velocity profiles. The following analysis provides insight into the dynamics of seas, and some of the features of these intriguing waves, including a process known as white-capping. 
    more » « less