skip to main content


Search for: All records

Award ID contains: 1716423

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cas12a is an RNA‐guided DNA endonuclease of the type V‐A CRISPR‐Cas system that has evolved convergently with the type II Cas9 protein. We previously showed that proline substitutions in the bridge helix (BH) impart target DNA cleavage selectivity inStreptococcus pyogenes(Spy) Cas9. Here, we examined a BH variant of Cas12a fromFrancisella novicida(FnoCas12aKD2P) to test mechanistic conservation. Our results show that for RNA‐guided DNA cleavage (cis‐activity), FnoCas12aKD2Paccumulates nicked products while cleaving supercoiled DNA substrates with mismatches, with certain mismatch positions being more detrimental for linearization. FnoCas12aKD2Palso possess reducedtrans‐single‐stranded DNA cleavage activity. These results implicate the BH in substrate selectivity in bothcis‐andtrans‐cleavages and show its conserved role in target discrimination among Cas nucleases.

     
    more » « less
  2. null (Ed.)
    Bacterial and archaeal CRISPR-Cas systems offer adaptive immune protection against foreign mobile genetic elements (MGEs). This function is regulated by sequence specific binding of CRISPR RNA (crRNA) to target DNA/RNA, with an additional requirement of a flanking DNA motif called the protospacer adjacent motif (PAM) in certain CRISPR systems. In this review, we discuss how the same fundamental mechanism of RNA-DNA and/or RNA-RNA complementarity is utilized by bacteria to regulate two distinct functions: to ward off intruding genetic materials and to modulate diverse physiological functions. The best documented examples of alternate functions are bacterial virulence, biofilm formation, adherence, programmed cell death, and quorum sensing. While extensive complementarity between the crRNA and the targeted DNA and/or RNA seems to constitute an efficient phage protection system, partial complementarity seems to be the key for several of the characterized alternate functions. Cas proteins are also involved in sequence-specific and non-specific RNA cleavage and control of transcriptional regulator expression, the mechanisms of which are still elusive. Over the past decade, the mechanisms of RNA-guided targeting and auxiliary functions of several Cas proteins have been transformed into powerful gene editing and biotechnological tools. We provide a synopsis of CRISPR technologies in this review. Even with the abundant mechanistic insights and biotechnology tools that are currently available, the discovery of new and diverse CRISPR types holds promise for future technological innovations, which will pave the way for precision genome medicine. 
    more » « less
  3. The DNA inside human cells provides instructions for all of the processes that happen inside the body. Errors in the DNA may lead to cancer, sickle cell disease, cystic fibrosis, Huntington’s disease, or other genetic disorders. Medical researchers are exploring whether it is possible to replace or repair the faulty DNA (an approach known as gene therapy) to reduce the symptoms, or even cure individuals, of these conditions. Over the last ten years, a new technology known as CRISPR-Cas9 gene editing has proved to be a reliable and efficient way to make small and precise changes to DNA in living cells. First, an enzyme called Cas9 searches for a segment of target DNA segment that matches a template molecule the enzyme carries. Cas9 then cuts the target DNA, which is repaired to match a new customized DNA sequence: this changes the genetic information of the cell. The Cas9 protein is made of a succession of building blocks called amino acids that create long chains which then fold to form the final three-dimensional shape of the enzyme. A region of Cas9 known as the HNH domain is responsible for cutting the target DNA. However, it remains unclear exactly which amino acids within this domain work together to sever the DNA. Here, Zuo et al. combined computational and experimental approaches to reveal the three-dimensional structure of the Cas9 enzyme when the HNH domain is poised to cut the target DNA. The findings were used to generate a computational model of Cas9 and this model predicted that the HNH domain relies on a group of three amino acids known collectively as D839-H840-N863 to cleave DNA strands. This knowledge is useful to understand exactly how Cas9 modifies genetic information. Ultimately, this may help to improve CRISPR-Cas9 technology so it could be safely used in geneediting therapies. 
    more » « less