skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1716532

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. By shaping meiotic recombination, chromosomal inversions can influence genetic exchange between hybridizing species. Despite the recognized importance of inversions in evolutionary processes such as divergence and speciation, teasing apart the effects of inversions over time remains challenging. For example, are their effects on sequence divergence primarily generated through creating blocks of linkage-disequilibrium pre-speciation or through preventing gene flux after speciation? We provide a comprehensive look into the influence of inversions on gene flow throughout the evolutionary history of a classic system: Drosophila pseudoobscura and D. persimilis. We use extensive whole-genome sequence data to report patterns of introgression and divergence with respect to chromosomal arrangements. Overall, we find evidence that inversions have contributed to divergence patterns between Drosophila pseudoobscura and D. persimilis over three distinct timescales: 1) segregation of ancestral polymorphism early in the speciation process, 2) gene flow after the split of D. pseudoobscura and D. persimilis, but prior to the split of D. pseudoobscura subspecies, and 3) recent gene flow between sympatric D. pseudoobscura and D. persimilis, after the split of D. pseudoobscura subspecies. We discuss these results in terms of our understanding of evolution in this classic system and provide cautions for interpreting divergence measures in other systems. 
    more » « less