Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Speculative-execution attacks, such as SgxSpectre, Foreshadow, and MDS attacks, leverage recently disclosed CPU hardware vulnerabilities and micro-architectural side channels to breach the confidentiality and integrity of Intel Software Guard eXtensions (SGX). Unlike traditional micro-architectural side-channel attacks, speculative-execution attacks extract any data in the enclave memory, which makes them very challenging to defeat purely from the software. However, to date, Intel has not completely mitigated the threats of speculative-execution attacks from the hardware. Hence, future attack variants may emerge. This paper proposes a software-based solution to speculative-execution attacks, even with the strong assumption that confidentiality of enclave memory is compromised. Our solution extends an existing work called HyperRace, which is a compiler-assisted tool for detecting Hyper-Threading based side-channel attacks against SGX enclaves, to thwart speculative-execution attacks from within SGX enclaves. It requires supports from the untrusted operating system, e.g., for temporarily disabling interrupts, but verifies the OS's behaviors. Additional microcode upgrades are required from Intel to secure the attestation flow.more » « less
-
Speculative execution side-channel vulnerabilities in micro-architecture processors have raised concerns about the security of Intel SGX. To understand clearly the security impact of this vulnerability against SGX, this paper makes the following studies: First, to demonstrate the feasibility of the attacks, we present SgxPectre Attacks (the SGX-variants of Spectre attacks) that exploit speculative execution side-channel vulnerabilities to subvert the confidentiality of SGX enclaves. We show that when the branch prediction of the enclave code can be influenced by programs outside the enclave, the control flow of the enclave program can be temporarily altered to execute instructions that lead to observable cache-state changes. An adversary observing such changes can learn secrets inside the enclave memory or its internal registers, thus completely defeating the confidentiality guarantee offered by SGX. Second, to determine whether real-world enclave programs are impacted by the attacks, we develop techniques to automate the search of vulnerable code patterns in enclave binaries using symbolic execution. Our study suggests that nearly any enclave program could be vulnerable to SgxPectre Attacks since vulnerable code patterns are available in most SGX runtimes (e.g., Intel SGX SDK, Rust-SGX, and Graphene-SGX). Third, we apply SgxPectre Attacks to steal seal keys and attestation keys from Intel signed quoting enclaves. The seal key can be used to decrypt sealed storage outside the enclaves and forge valid sealed data; the attestation key can be used to forge attestation signatures. For these reasons, SgxPectre Attacks practically defeat SGX's security protection. Finally, we evaluate Intel's existing countermeasures against SgxPectre Attacks and discusses the security implications.more » « less
-
Increasingly, more and more mobile applications (apps for short) are using the cloud as the back-end, in particular the cloud APIs, for data storage, data analytics, message notification, and monitoring. Unfortunately, we have recently witnessed massive data leaks from the cloud, ranging from personally identifiable information to corporate secrets. In this paper, we seek to understand why such significant leaks occur and design tools to automatically identify them. To our surprise, our study reveals that lack of authentication, misuse of various keys (e.g., normal user keys and superuser keys) in authentication, or misconfiguration of user permissions in authorization are the root causes. Then, we design a set of automated program analysis techniques including obfuscation-resilient cloud API identification and string value analysis, and implement them in a tool called LeakScope to identify the potential data leakage vulnerabilities from mobile apps based on how the cloud APIs are used. Our evaluation with over 1.6 million mobile apps from the Google Play Store has uncovered 15, 098 app servers managed by mainstream cloud providers such as Amazon, Google, and Microsoft that are subject to data leakage attacks. We have made responsible disclosure to each of the cloud service providers, and they have all confirmed the vulnerabilities we have identified and are actively working with the mobile app developers to patch their vulnerable services.more » « less
-
Recent advances in trusted execution environments, specifically with Intel's introduction of SGX on consumer processors, have provided unprecedented opportunities to create secure applications with a small TCB. While a large number of SGX solutions have been proposed, nearly all of them focus on protecting native code applications, leaving scripting languages unprotected. To fill this gap, this paper presents SCRIPTSHIELD, a framework capable of running legacy script code while simultaneously providing confidentiality and integrity for scripting code and data. In contrast to the existing schemes that either require tedious and time-consuming re-development or result in a large TCB by importing an entire library OS or container, SCRIPTSHIELD keeps the TCB small and provides backwards compatibility (i.e., no changes needed to the scripting code itself). The core idea is to customize the script interpreter to run inside an SGX enclave and pass scripts to it. We have implemented SCRIPTSHIELD and tested with three popular scripting languages: Lua, JavaScript, and Squirrel. Our experimental results show that SCRIPTSHIELD does not cause noticeable overhead. The source code of SCRIPTSHIELD has been made publicly available as an open source project.more » « less
-
Intel Software Guard Extensions (SGX) remote attestation enables enclaves to authenticate hardware inside which they run, and attest the integrity of their enclave memory to the remote party. To enforce direct control of attestation, Intel mandates attestation to be verified by Intel’s attestation service. This Intel-centric attestation model, however, neither protects privacy nor performs efficiently when distributed and frequent attestation is required. This paper presents OPERA, an Open Platform for Enclave Remote Attestation. Without involving Intel’s attestation service while conducting attestation, OPERA is unchained from Intel, although it relies on Intel to establish a chain of trust whose anchor point is the secret rooted in SGX hardware. OPERA is open, as the implementation of its attestation service is completely open, allowing any enclave developer to run her own OPERA service, and its execution is publicly verifiable and hence trustworthy; OPERA is privacy-preserving, as the attestation service does not learn which enclave is being attested or when the attestation takes place; OPERA is performant, as it does not rely on a single-point-of-verification and also reduces the latency of verification.more » « less
-
Increasingly, more and more mobile applications (apps for short) are using the cloud as the back-end, in particular the cloud APIs, for data storage, data analytics, message notification, and monitoring. Unfortunately, we have recently witnessed massive data leaks from the cloud, ranging from personally identifiable information to corporate secrets. In this paper, we seek to understand why such significant leaks occur and design tools to automatically identify them. To our surprise, our study reveals that lack of authentication, misuse of various keys (e.g., normal user keys and superuser keys) in authentication, or misconfiguration of user permissions in authorization are the root causes. Then, we design a set of automated program analysis techniques including obfuscation-resilient cloud API identification and string value analysis, and implement them in a tool called LeakScope to identify the potential data leakage vulnerabilities from mobile apps based on how the cloud APIs are used. Our evaluation with over 1.6 million mobile apps from the Google Play Store has uncovered 15, 098 app servers managed by mainstream cloud providers such as Amazon, Google, and Microsoft that are subject to data leakage attacks. We have made responsible disclosure to each of the cloud service providers, and they have all confirmed the vulnerabilities we have identified and are actively working with the mobile app developers to patch their vulnerable services.more » « less
-
AMD’s Secure Encrypted Virtualization (SEV) is an emerging technology to secure virtual machines (VM) even in the presence of malicious hypervisors. However, the lack of trust in the privileged software also introduces an assortment of new attack vectors to SEV-enabled VMs that were mostly unexplored in the literature. This paper studies the insecurity of SEV from the perspective of the unprotected I/O operations in the SEV-enabled VMs. The results are alerting: not only have we discovered attacks that breach the confidentiality and integrity of these I/O operations—which we find very difficult to mitigate by existing approaches—but more significantly we demonstrate the construction of two attack primitives against SEV’s memory encryption schemes, namely a memory decryption oracle and a memory encryption oracle, which enables an adversary to decrypt and encrypt arbitrary messages using the memory encryption keys of the VMs. We evaluate the proposed attacks and discuss potential solutions to the underlying problems.more » « less