skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1718355

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study a cache network under arbitrary adversarial request arrivals. We propose a distributed online policy based on the online tabular greedy algorithm. Our distributed policy achieves sublinear (1-1/e)-regret, also in the case when update costs cannot be neglected. Numerical evaluation over several topologies supports our theoretical results and demonstrates that our algorithm outperforms state-of-art online cache algorithms. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    We introduce the problem of optimal congestion control in cache networks, whereby both rate allocations and content placements are optimized jointly. We formulate this as a maximization problem with non-convex constraints, and propose solving this problem via (a) a Lagrangian barrier algorithm and (b) a convex relaxation. We prove different optimality guarantees for each of these two algorithms; our proofs exploit the fact that the non-convex constraints of our problem involve DR-submodular functions. 
    more » « less
  5. null (Ed.)