skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1718549

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider a data analyst's problem of purchasing data from strategic agents to compute an unbiased estimate of a statistic of interest. Agents incur private costs to reveal their data and the costs can be arbitrarily correlated with their data. Once revealed, data are verifiable. This paper focuses on linear unbiased estimators. We design an individually rational and incentive compatible mechanism that optimizes the worst-case mean-squared error of the estimation, where the worst-case is over the unknown correlation between costs and data, subject to a budget constraint in expectation. We characterize the form of the optimal mechanism in closed-form. We further extend our results to acquiring data for estimating a parameter in regression analysis, where private costs can correlate with the values of the dependent variable but not with the values of the independent variables. 
    more » « less
  2. We consider partially-specified optimization problems where the goal is to actively, but efficiently, acquire missing information about the problem in order to solve it. An algo- rithm designer wishes to solve a linear pro- gram (LP), maxcT x s.t. Ax ≤ b,x ≥ 0, but does not initially know some of the pa- rameters. The algorithm can iteratively choose an unknown parameter and gather information in the form of a noisy sample centered at the parameter’s (unknown) value. The goal is to find an approximately feasible and optimal so- lution to the underlying LP with high proba- bility while drawing a small number of sam- ples. We focus on two cases. (1) When the parameters b of the constraints are initially un- known, we propose an efficient algorithm com- bining techniques from the ellipsoid method for LP and confidence-bound approaches from bandit algorithms. The algorithm adaptively gathers information about constraints only as needed in order to make progress. We give sample complexity bounds for the algorithm and demonstrate its improvement over a naive approach via simulation. (2) When the param- eters c of the objective are initially unknown, we take an information-theoretic approach and give roughly matching upper and lower sam- ple complexity bounds, with an (inefficient) successive-elimination algorithm. 
    more » « less