skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1719208

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Syntectonic microstructural evolution is a well‐known phenomenon in the mantle and lower crust associated with two main processes: grain size reduction through dynamic recrystallization and development of crystallographic preferred orientation (CPO). However, the effects of annealing via static recrystallization on grain size and CPO have been largely overlooked. We investigated mantle annealing by analyzing a suite of kimberlite‐hosted garnet peridotite xenoliths from the Wyoming Craton. We focus on five xenoliths that show microstructures reflecting different degrees of recrystallization, with annealed grains characterized by distinctive faceted boundaries crosscutting surrounding, nonfaceted matrix grains. These textures are indicative of discontinuous static recrystallization (DiSRX). Electron backscatter diffraction analysis further demonstrates a ∼10°–20° misorientation between DiSRXed grains and the matrix grains, resulting in an overall weaker CPO. These characteristics are remarkably similar to microstructures observed in samples that were annealed after deformation in the laboratory. Measurements of the thermal conditions and water contents associated with the last equilibration of the xenoliths suggests that high homologous temperatures (T/Tm > 0.9) are necessary to induce DiSRX. We postulate that annealing through DiSRX occurs under high temperatures after a short episode of intense deformation (years to hundreds of years) with timescales for annealing estimated as weeks to years, significantly slower than the timescale of hours expected for a kimberlitic magma ascent. We conclude that microstructural transformation due to DiSRX will occur during transient heating events associated with mantle upwelling, plumes, and lithospheric thinning. 
    more » « less