skip to main content


Search for: All records

Award ID contains: 1719607

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Curcumin is a derivative of the turmeric spice, which is a yellow-pigmented root crop with a resilient sheath and bright orange flesh. It is originally known to be utilized in Asian dishes but, has been discovered to have antioxidant, anti-inflammatory, antiviral, antibacterial and anticancer characteristics. Different researchers have established great possibilities of curcumin's ability to prohibit the growth of cancer cells especially, because of its potentiality to differentiate between normal and cancerous cells. Research questions include understanding the effects of curcumin on the MCF-7 breast cancer cells with regards to the biomolecules of the cells. The results indicated that after attachment of cells for 48 hours, the concentration of curcumin at 15 µM showed more than 90% inhibition of cells within 24 hours. The analysis was carried out on the viability of the cells, western blotting and reverse transcriptase-polymerase chain reaction. Western blot analysis of signaling proteins from curcumin-treated cells showed that the expression level of phosphorylated protein p44/42 in the MAP kinase pathway was significantly decreased and the apoptotic marker cleaved caspase 3 was increased as compared to the curcumin-untreated control cells. Moreover, RT-PCR analysis of the reference genes in the apoptotic pathway (p53, caspase 9, BCL-2 and Bax) demonstrated the upregulation of p53, Bax and caspase 9 genes. The results assembled from this present study suggested that curcumin inhibited the growth and induced caspase-mediated apoptosis of MCF-7 cells via the MAPK signaling pathway. Therefore, breast cancer treatment with curcumin seems to be a promising remedial path in near future. 
    more » « less
  2. Nanoparticles have been widely used as remedies for disorders for a long time. They are 10-9 m specks of substances that can be found both naturally and synthesized in the laboratory with metal and nonmetal materials. In this study, gold nanoparticles (AuNPs) were synthesized using the citrate reduction method, and the 35 nm size of the nanoparticles was determined using a UV-Vis Spectrophotometer at 525 nm wavelength. The synthesized nanoparticles were further studied on MCF-7 breast cancer cells to understand how various genes are expressed in the induction of apoptosis in signal transduction pathways. The results obtained from the anticancer activity of the gold nanoparticles showed approximately 90% inhibition of cell growth after 72 hours of treatment. Western blot analysis demonstrated the downregulation of p44/42 MAPK (ERK1/2) protein due to gold nanoparticle treatment. Moreover, reverse transcription-polymerase chain reaction (RT-PCR) analysis of apoptotic genes revealed the upregulation of the p53 tumor suppressor gene, Bax, and caspase-9. The results assembled from this study further indicates that p44/42 MAPK, p53, caspase 9 and Bax play a major role in the mechanism of apoptosis in the MCF-7 breast cancer cells. 
    more » « less