skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1719780

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the effects of an attractive, long-range Yukawa interaction between baryons and dark matter (DM), focusing in particular on temperature and pulsar timing observations of neutron stars (NSs). We show that such a fifth force, with strength modestly stronger than gravity at ranges greater than tens of kilometers (corresponding to mediator masses less than 1e-11 eV), can dramatically enhance dark matter kinetic heating, capture, and pulsar timing Doppler shifts relative to gravity plus short range interactions alone. Using the coldest observed NS and pulsar timing array (PTA) data, we derive limits on fifth force strength over a DM mass range spanning light dark matter up to order solar mass composite DM objects. We also consider an indirect limit by combining bullet cluster limits on the DM self-interaction with weak equivalence principle test limits on baryonic self-interactions. We find the combined indirect limits are moderately stronger than kinetic heating and PTA limits, except when considering a DM subcomponent. 
    more » « less
  2. null (Ed.)