Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present an integer programming model to compute the strong rainbow connection number,src(G), of any simple graphG. We introduce several enhancements to the proposed model, including a fast heuristic, and a variable elimination scheme. Moreover, we present a novel lower bound forsrc(G) which may be of independent research interest. We solve the integer program both directly and using an alternative method based on iterative lower bound improvement, the latter of which we show to be highly effective in practice. To our knowledge, these are the first computational methods for the strong rainbow connection problem. We demonstrate the efficacy of our methods by computing the strong rainbow connection numbers of graphs containing up to 379 vertices.more » « less
-
Abstract Positive semidefinite (PSD) zero forcing is a dynamic graph process in which an initial subset of vertices are colored and may cause additional vertices to become colored through a set of color changing rules. Subsets which cause all other vertices to become colored are called PSD zero forcing sets; the PSD zero forcing number of a graph is the minimum cardinality attained by its PSD zero forcing sets. The PSD zero forcing number is of particular interest as it bounds solutions for the minimum rank and PSD min rank problems, both popular in linear algebra. This paper introduces blocking sets for PSD zero forcing sets which are used to formulate the first integer program (IP) for computing PSD zero forcing numbers of general graphs. It is shown that facets of the feasible region of this IP's linear relaxation correspond to zero forcing forts which induce connected subgraphs, but that identifying min cardinality connected forts is‐hard in general. Auxiliary IPs used to find these blocking sets are also given, enabling the master IP to be solved via constraint generation. Experiments comparing the proposed methods and existing algorithms are provided demonstrating improved runtime performance, particularly so in dense and sparse graphs.more » « less
-
Abstract The concept of branch decomposition was first introduced by Robertson and Seymour in their proof of the Graph Minors Theorem, and can be seen as a measure of the global connectivity of a graph. Since then, branch decomposition and branchwidth have been used for computationally solving combinatorial optimization problems modeled on graphs and matroids. General branchwidth is the extension of branchwidth to any symmetric submodular function defined over a finite set. General branchwidth encompasses graphic branchwidth, matroidal branchwidth, and rankwidth. A tangle basis is related to a tangle, a notion also introduced by Robertson and Seymour; however, a tangle basis is more constructive in nature. It was shown in [I. V. Hicks. Graphs, branchwidth, and tangles! Oh my!Networks, 45:55‐60, 2005] that a tangle basis of orderkis coextensive to a tangle of orderk. In this paper, we revisit the construction of tangle bases computationally for other branchwidth parameters and show that the tangle basis approach is still competitive for computing optimal branch decompositions for general branchwidth.more » « less
-
The study of power domination in graphs arises from the problem of placing a minimum number of measurement devices in an electrical network while monitoring the entire network. A power dominating set of a graph is a set of vertices from which every vertex in the graph can be observed, following a set of rules for power system monitoring. In this paper, we study the problem of finding a minimum power dominating set which is connected; the cardinality of such a set is called the connected power domination number of the graph. We show that the connected power domination number of a graph is NP-hard to compute in general, but can be computed in linear time in cactus graphs and block graphs. We also give various structural results about connected power domination, including a cut vertex decomposition and a characterization of the effects of various vertex and edge operations on the connected power domination number. Finally, we present novel integer programming formulations for power domination, connected power domination, and power propagation time, and give computational results.more » « less
An official website of the United States government

Full Text Available