Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract When implementing Markov Chain Monte Carlo (MCMC) algorithms, perturbation caused by numerical errors is sometimes inevitable. This paper studies how the perturbation of MCMC affects the convergence speed and approximation accuracy. Our results show that when the original Markov chain converges to stationarity fast enough and the perturbed transition kernel is a good approximation to the original transition kernel, the corresponding perturbed sampler has fast convergence speed and high approximation accuracy as well. Our convergence analysis is conducted under either the Wasserstein metric or the$$\chi^2$$metric, both are widely used in the literature. The results can be extended to obtain non-asymptotic error bounds for MCMC estimators. We demonstrate how to apply our convergence and approximation results to the analysis of specific sampling algorithms, including Random walk Metropolis, Metropolis adjusted Langevin algorithm with perturbed target densities, and parallel tempering Monte Carlo with perturbed densities. Finally, we present some simple numerical examples to verify our theoretical claims.more » « lessFree, publicly-accessible full text available March 1, 2026
-
null (Ed.)Consider a fractional Brownian motion (fBM) [Formula: see text] with Hurst index [Formula: see text]. We construct a probability space supporting both B H and a fully simulatable process [Formula: see text] such that[Formula: see text] with probability one for any user-specified error bound [Formula: see text]. When [Formula: see text], we further enhance our error guarantee to the α-Hölder norm for any [Formula: see text]. This enables us to extend our algorithm to the simulation of fBM-driven stochastic differential equations [Formula: see text]. Under mild regularity conditions on the drift and diffusion coefficients of Y, we construct a probability space supporting both Y and a fully simulatable process [Formula: see text] such that[Formula: see text] with probability one. Our algorithms enjoy the tolerance-enforcement feature, under which the error bounds can be updated sequentially in an efficient way. Thus, the algorithms can be readily combined with other advanced simulation techniques to estimate the expectations of functionals of fBMs efficiently.more » « less
-
Fractional Brownian motions (fBM) and related processes are widely used in financial modeling to capture the complicated dependence structure of the volatility. In this paper, we analyze an infinite series representation of fBM proposed in (Dzhaparidze and Van Zanten 2004) and establish an almost sure convergence rate of the series representation. The rate is also shown to be optimal. We then demonstrate how the strong convergence rate result can be applied to construct simulation algorithms with path-by-path error guarantees.more » « less
-
Abstract We present the first algorithm that samples max n ≥0 { S n − n α }, where S n is a mean zero random walk, and n α with $$\alpha \in ({1 \over 2},1)$$ defines a nonlinear boundary. We show that our algorithm has finite expected running time. We also apply this algorithm to construct the first exact simulation method for the steady-state departure process of a GI/GI/∞ queue where the service time distribution has infinite mean.more » « less
An official website of the United States government

Full Text Available