Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)A bstract The study of quantum gravity in the form of the holographic duality has uncovered and motivated the detailed investigation of various diagnostics of quantum chaos. One such measure is the operator size distribution, which characterizes the size of the support region of an operator and its evolution under Heisenberg evolution. In this work, we examine the role of the operator size distribution in holographic duality for the Sachdev-Ye-Kitaev (SYK) model. Using an explicit construction of AdS 2 bulk fermion operators in a putative dual of the low temperature SYK model, we study the operator size distribution of the boundary and bulk fermions. Our result provides a direct derivation of the relationship between (effective) operator size of both the boundary and bulk fermions and bulk SL(2; ℝ) generators.more » « less
-
null (Ed.)A bstract Entanglement entropy, or von Neumann entropy, quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this paper, we propose a generalization of the quantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy generalizations, are defined by analytic continuation of a replica calculation. The replicated theory is defined as a gravitational path integral with multiple copies of the original boundary conditions, with a co-dimension-2 brane at the boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensional maximally extended Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete understanding of quantum information properties in general dynamical geometries. We show that, in absence of a large boundary like in AdS space case, it is essential to introduce ancilla that couples to the original system, in order for correctly characterizing quantum states and correlation functions in the random tensor network. Using the superdensity operator formalism, we study the system with ancilla and show how quantum information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe (without spatial boundary) case and discuss how it is related to open universe.more » « less
-
null (Ed.)We ask whether the knowledge of a single eigenstate of a local Hamiltonian is sufficient to uniquely determine the Hamiltonian. We present evidence that the answer is ``yes" for generic local Hamiltonians, given either the ground state or an excited eigenstate. In fact, knowing only the two-point equal-time correlation functions of local observables with respect to the eigenstate should generically be sufficient to exactly recover the Hamiltonian for finite-size systems, with numerical algorithms that run in a time that is polynomial in the system size. We also investigate the large-system limit, the sensitivity of the reconstruction to error, and the case when correlation functions are only known for observables on a fixed sub-region. Numerical demonstrations support the results for finite one-dimensional spin chains (though caution must be taken when extrapolating to infinite-size systems in higher dimensions). For the purpose of our analysis, we define the `` k -correlation spectrum" of a state, which reveals properties of local correlations in the state and may be of independent interest.more » « less
An official website of the United States government
