skip to main content


Search for: All records

Award ID contains: 1722801

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Simsekler, Mecit Can (Ed.)
    Missing data presents a challenge for machine learning applications specifically when utilizing electronic health records to develop clinical decision support systems. The lack of these values is due in part to the complex nature of clinical data in which the content is personalized to each patient. Several methods have been developed to handle this issue, such as imputation or complete case analysis, but their limitations restrict the solidity of findings. However, recent studies have explored how using some features as fully available privileged information can increase model performance including in SVM. Building on this insight, we propose a computationally efficient kernel SVM-based framework ( l 2 -SVMp+) that leverages partially available privileged information to guide model construction. Our experiments validated the superiority of l 2 -SVMp+ over common approaches for handling missingness and previous implementations of SVMp+ in both digit recognition, disease classification and patient readmission prediction tasks. The performance improves as the percentage of available privileged information increases. Our results showcase the capability of l 2 -SVMp+ to handle incomplete but important features in real-world medical applications, surpassing traditional SVMs that lack privileged information. Additionally, l 2 -SVMp+ achieves comparable or superior model performance compared to imputed privileged features. 
    more » « less
    Free, publicly-accessible full text available June 29, 2024
  2. null (Ed.)
  3. null (Ed.)
    Abstract Background This study outlines an image processing algorithm for accurate and consistent lung segmentation in chest radiographs of critically ill adults and children typically obscured by medical equipment. In particular, this work focuses on applications in analysis of acute respiratory distress syndrome – a critical illness with a mortality rate of 40% that affects 200,000 patients in the United States and 3 million globally each year. Methods Chest radiographs were obtained from critically ill adults (n = 100), adults diagnosed with acute respiratory distress syndrome (ARDS) (n = 25), and children (n = 100) hospitalized at Michigan Medicine. Physicians annotated the lung field of each radiograph to establish the ground truth. A Total Variation-based Active Contour (TVAC) lung segmentation algorithm was developed and compared to multiple state-of-the-art methods including a deep learning model (U-Net), a random walker algorithm, and an active spline model, using the Sørensen–Dice coefficient to measure segmentation accuracy. Results The TVAC algorithm accurately segmented lung fields in all patients in the study. For the adult cohort, an averaged Dice coefficient of 0.86 ±0.04 (min: 0.76) was reported for TVAC, 0.89 ±0.12 (min: 0.01) for U-Net, 0.74 ±0.19 (min: 0.15) for the random walker algorithm, and 0.64 ±0.17 (min: 0.20) for the active spline model. For the pediatric cohort, a Dice coefficient of 0.85 ±0.04 (min: 0.75) was reported for TVAC, 0.87 ±0.09 (min: 0.56) for U-Net, 0.67 ±0.18 (min: 0.18) for the random walker algorithm, and 0.61 ±0.18 (min: 0.18) for the active spline model. Conclusion The proposed algorithm demonstrates the most consistent performance of all segmentation methods tested. These results suggest that TVAC can accurately identify lung fields in chest radiographs in critically ill adults and children. 
    more » « less
  4. Acute respiratory distress syndrome (ARDS) is a fulminant inflammatory lung injury that develops in patients with critical illnesses, affecting 200,000 patients in the United States annually. However, a recent study suggests that most patients with ARDS are diagnosed late or missed completely and fail to receive life-saving treatments. This is primarily due to the dependency of current diagnosis criteria on chest x-ray, which is not necessarily available at the time of diagnosis. In machine learning, such an information is known as Privileged Information - information that is available at training but not at testing. However, in diagnosing ARDS, privileged information (chest x-rays) are sometimes only available for a portion of the training data. To address this issue, the Learning Using Partially Available Privileged Information (LUPAPI) paradigm is proposed. As there are multiple ways to incorporate partially available privileged information, three models built on classical SVM are described. Another complexity of diagnosing ARDS is the uncertainty in clinical interpretation of chest x-rays. To address this, the LUPAPI framework is then extended to incorporate label uncertainty, resulting in a novel and comprehensive machine learning paradigm - Learning Using Label Uncertainty and Partially Available Privileged Information (LULUPAPI). The proposed frameworks use Electronic Health Record (EHR) data as regular information, chest x-rays as partially available privileged information, and clinicians' confidence levels in ARDS diagnosis as a measure of label uncertainty. Experiments on an ARDS dataset demonstrate that both the LUPAPI and LULUPAPI models outperform SVM, with LULUPAPI performing better than LUPAPI. 
    more » « less
  5. When training a machine learning algorithm for a supervised-learning task in some clinical applications, uncertainty in the correct labels of some patients may adversely affect the performance of the algorithm. For example, even clinical experts may have less confidence when assigning a medical diagnosis to some patients because of ambiguity in the patient's case or imperfect reliability of the diagnostic criteria. As a result, some cases used in algorithm training may be mislabeled, adversely affecting the algorithm's performance. However, experts may also be able to quantify their diagnostic uncertainty in these cases. We present a robust method implemented with support vector machines (SVM) to account for such clinical diagnostic uncertainty when training an algorithm to detect patients who develop the acute respiratory distress syndrome (ARDS). ARDS is a syndrome of the critically ill that is diagnosed using clinical criteria known to be imperfect. We represent uncertainty in the diagnosis of ARDS as a graded weight of confidence associated with each training label. We also performed a novel time-series sampling method to address the problem of intercorrelation among the longitudinal clinical data from each patient used in model training to limit overfitting. Preliminary results show that we can achieve meaningful improvement in the performance of algorithm to detect patients with ARDS on a hold-out sample, when we compare our method that accounts for the uncertainty of training labels with a conventional SVM algorithm. 
    more » « less
  6. When training a machine learning algorithm for a supervised-learning task in some clinical applications, uncertainty in the correct labels of some patients may adversely affect the performance of the algorithm. For example, even clinical experts may have less confidence when assigning a medical diagnosis to some patients because of ambiguity in the patient's case or imperfect reliability of the diagnostic criteria. As a result, some cases used in algorithm training may be mis-labeled, adversely affecting the algorithm's performance. However, experts may also be able to quantify their diagnostic uncertainty in these cases. We present a robust method implemented with Support Vector Machines to account for such clinical diagnostic uncertainty when training an algorithm to detect patients who develop the acute respiratory distress syndrome (ARDS). ARDS is a syndrome of the critically ill that is diagnosed using clinical criteria known to be imperfect. We represent uncertainty in the diagnosis of ARDS as a graded weight of confidence associated with each training label. We also performed a novel time-series sampling method to address the problem of inter-correlation among the longitudinal clinical data from each patient used in model training to limit overfitting. Preliminary results show that we can achieve meaningful improvement in the performance of algorithm to detect patients with ARDS on a hold-out sample, when we compare our method that accounts for the uncertainty of training labels with a conventional SVM algorithm. 
    more » « less