Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
BackgroundMachine learning approaches, including deep learning, have demonstrated remarkable effectiveness in the diagnosis and prediction of diabetes. However, these approaches often operate as opaque black boxes, leaving health care providers in the dark about the reasoning behind predictions. This opacity poses a barrier to the widespread adoption of machine learning in diabetes and health care, leading to confusion and eroding trust. ObjectiveThis study aimed to address this critical issue by developing and evaluating an explainable artificial intelligence (AI) platform, XAI4Diabetes, designed to empower health care professionals with a clear understanding of AI-generated predictions and recommendations for diabetes care. XAI4Diabetes not only delivers diabetes risk predictions but also furnishes easily interpretable explanations for complex machine learning models and their outcomes. MethodsXAI4Diabetes features a versatile multimodule explanation framework that leverages machine learning, knowledge graphs, and ontologies. The platform comprises the following four essential modules: (1) knowledge base, (2) knowledge matching, (3) prediction, and (4) interpretation. By harnessing AI techniques, XAI4Diabetes forecasts diabetes risk and provides valuable insights into the prediction process and outcomes. A structured, survey-based user study assessed the app’s usability and influence on participants’ comprehension of machine learning predictions in real-world patient scenarios. ResultsA prototype mobile app was meticulously developed and subjected to thorough usability studies and satisfaction surveys. The evaluation study findings underscore the substantial improvement in medical professionals’ comprehension of key aspects, including the (1) diabetes prediction process, (2) data sets used for model training, (3) data features used, and (4) relative significance of different features in prediction outcomes. Most participants reported heightened understanding of and trust in AI predictions following their use of XAI4Diabetes. The satisfaction survey results further revealed a high level of overall user satisfaction with the tool. ConclusionsThis study introduces XAI4Diabetes, a versatile multi-model explainable prediction platform tailored to diabetes care. By enabling transparent diabetes risk predictions and delivering interpretable insights, XAI4Diabetes empowers health care professionals to comprehend the AI-driven decision-making process, thereby fostering transparency and trust. These advancements hold the potential to mitigate biases and facilitate the broader integration of AI in diabetes care.more » « less
-
BackgroundChronic diseases such as heart disease, stroke, diabetes, and hypertension are major global health challenges. Healthy eating can help people with chronic diseases manage their condition and prevent complications. However, making healthy meal plans is not easy, as it requires the consideration of various factors such as health concerns, nutritional requirements, tastes, economic status, and time limits. Therefore, there is a need for effective, affordable, and personalized meal planning that can assist people in choosing food that suits their individual needs and preferences. ObjectiveThis study aimed to design an artificial intelligence (AI)–powered meal planner that can generate personalized healthy meal plans based on the user’s specific health conditions, personal preferences, and status. MethodsWe proposed a system that integrates semantic reasoning, fuzzy logic, heuristic search, and multicriteria analysis to produce flexible, optimized meal plans based on the user’s health concerns, nutrition needs, as well as food restrictions or constraints, along with other personal preferences. Specifically, we constructed an ontology-based knowledge base to model knowledge about food and nutrition. We defined semantic rules to represent dietary guidelines for different health concerns and built a fuzzy membership of food nutrition based on the experience of experts to handle vague and uncertain nutritional data. We applied a semantic rule-based filtering mechanism to filter out food that violate mandatory health guidelines and constraints, such as allergies and religion. We designed a novel, heuristic search method that identifies the best meals among several candidates and evaluates them based on their fuzzy nutritional score. To select nutritious meals that also satisfy the user’s other preferences, we proposed a multicriteria decision-making approach. ResultsWe implemented a mobile app prototype system and evaluated its effectiveness through a use case study and user study. The results showed that the system generated healthy and personalized meal plans that considered the user’s health concerns, optimized nutrition values, respected dietary restrictions and constraints, and met the user’s preferences. The users were generally satisfied with the system and its features. ConclusionsWe designed an AI-powered meal planner that helps people create healthy and personalized meal plans based on their health conditions, preferences, and status. Our system uses multiple techniques to create optimized meal plans that consider multiple factors that affect food choice. Our evaluation tests confirmed the usability and feasibility of the proposed system. However, some limitations such as the lack of dynamic and real-time updates should be addressed in future studies. This study contributes to the development of AI-powered personalized meal planning systems that can support people’s health and nutrition goals.more » « less
-
Diabetes management requires constant monitoring and individualized adjustments. This study proposes a novel approach that leverages digital twins and personal health knowledge graphs (PHKGs) to revolutionize diabetes care. Our key contribution lies in developing a real-time, patient-centric digital twin framework built on PHKGs. This framework integrates data from diverse sources, adhering to HL7 standards and enabling seamless information access and exchange while ensuring high levels of accuracy in data representation and health insights. PHKGs offer a flexible and efficient format that supports various applications. As new knowledge about the patient becomes available, the PHKG can be easily extended to incorporate it, enhancing the precision and accuracy of the care provided. This dynamic approach fosters continuous improvement and facilitates the development of new applications. As a proof of concept, we have demonstrated the versatility of our digital twins by applying it to different use cases in diabetes management. These include predicting glucose levels, optimizing insulin dosage, providing personalized lifestyle recommendations, and visualizing health data. By enabling real-time, patient-specific care, this research paves the way for more precise and personalized healthcare interventions, potentially improving long-term diabetes management outcomes.more » « less
-
Eating, central to human existence, is influenced by a myriad of factors, including nutrition, health, personal taste, cultural background, and flavor preferences. The challenge of devising personalized meal plans that effectively encompass these dimensions is formidable. A crucial shortfall in many existing meal-planning systems is poor user adherence, often stemming from a disconnect between the plan and the user’s lifestyle, preferences, or unseen eating patterns. Our study introduces a pioneering algorithm, CFRL, which melds reinforcement learning (RL) with collaborative filtering (CF) in a unique synergy. This algorithm not only addresses nutritional and health considerations but also dynamically adapts to and uncovers latent user eating habits, thereby significantly enhancing user acceptance and adherence. CFRL utilizes Markov decision processes (MDPs) for interactive meal recommendations and incorporates a CF-based MDP framework to align with broader user preferences, translated into a shared latent vector space. Central to CFRL is its innovative reward-shaping mechanism, rooted in multi-criteria decision-making that includes user ratings, preferences, and nutritional data. This results in versatile, user-specific meal plans. Our comparative analysis with four baseline methods showcases CFRL’s superior performance in key metrics like user satisfaction and nutritional adequacy. This research underscores the effectiveness of combining RL and CF in personalized meal planning, marking a substantial advancement over traditional approaches.more » « less
An official website of the United States government
