skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1724686

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Determining conditions for earthquake slip on faults is a key goal of fault mechanics highly relevant to seismic hazard. Previous studies have demonstrated that enhanced dynamic weakening (EDW) can lead to dynamic rupture of faults with much lower shear stress than required for rupture nucleation. We study the stress conditions before earthquake ruptures of different sizes that spontaneously evolve in numerical simulations of earthquake sequences on rate‐and‐state faults with EDW due to thermal pressurization of pore fluids. We find that average shear stress right before dynamic rupture (aka shear prestress) systematically varies with the rupture size. The smallest ruptures have prestress comparable to the local shear stress required for nucleation. Larger ruptures weaken the fault more, propagate over increasingly under‐stressed areas due to dynamic stress concentration, and result in progressively lower average prestress over the entire rupture. The effect is more significant in fault models with more efficient EDW. We find that, as a result, fault models with more efficient weakening produce fewer small events and result in systematically lower b‐values of the frequency‐magnitude event distributions. The findings (a) illustrate that large earthquakes can occur on faults that appear not to be critically stressed compared to stresses required for slip nucleation; (b) highlight the importance of finite‐fault modeling in relating the local friction behavior determined in the lab to the field scale; and (c) suggest that paucity of small events or seismic quiescence may be the observational indication of mature faults that operate under low shear stress due to EDW. 
    more » « less
  2. Abstract While many large earthquakes are preceded by observable foreshocks, the mechanism responsible for the occurrence of these smaller‐scale seismic events remains uncertain. One physical explanation of foreshocks with growing support is that they are produced by the interaction of slow slip with fault heterogeneity. Inspired by the suggestion from laboratory experiments that foreshocks occur on fault asperities (bumps), we explore rate‐and‐state fault models with patches of higher normal stress embedded in a larger seismogenic region by conducting 3‐D numerical simulations of their behavior over long‐term sequences of aseismic and seismic slips. The models do produce smaller‐scale seismicity during the aseismic nucleation of larger‐scale seismic events. These smaller‐scale events have reasonable stress drops, despite the highly elevated compression assigned to the source patches. We find that the two main factors contributing to the reasonable stress drops are the significant extent of the rupture into the region surrounding the patches and the aseismic stress release just prior to the seismic events. The smaller‐scale seismicity can only occur if a sufficient separation in nucleation scales between the foreshock‐like events and mainshocks is achieved. Our modeling provides insight into the conditions conducive for generating foreshocks on both natural and laboratory faults. 
    more » « less
  3. Abstract. Substantial insight into earthquake source processes has resulted from considering frictional ruptures analogous to cohesive-zone shear cracks from fracture mechanics. This analogy holds for slip-weakening representations of fault friction that encapsulate the resistance to rupture propagation in the form of breakdown energy, analogous to fracture energy, prescribed in advance as if it were a material property of the fault interface. Here, we use numerical models of earthquake sequences with enhanced weakening due to thermal pressurization of pore fluids to show how accounting for thermo-hydro-mechanical processes during dynamic shear ruptures makes breakdown energy rupture-dependent. We find that local breakdown energy is neither a constant material property nor uniquely defined by the amount of slip attained during rupture, but depends on how that slip is achieved through the history of slip rate and dynamic stress changes during the rupture process. As a consequence, the frictional breakdown energy of the same location along the fault can vary significantly in different earthquake ruptures that pass through. These results suggest the need to reexamine the assumption of predetermined frictional breakdown energy common in dynamic rupture modeling and to better understand the factors that control rupture dynamics in the presence of thermo-hydro-mechanical processes. 
    more » « less