skip to main content


Search for: All records

Award ID contains: 1725186

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The di!usion of water through silicate melts is a key process in volcanic systems. Di!usion controls the growth of the bub- bles that drive volcanic eruptions and determines the evolution of the spatial distribution of dissolved water during and after magma mingling, crystal growth, fracturing and fragmentation, and welding of pyroclasts. Accurate models for water di!u- sion are therefore essential for forward modelling of eruptive behaviour, and for inverse modelling to reconstruct eruptive and post-eruptive history from the spatial distribution of water in eruptive products. Existing models do not include the kinetics of the homogeneous species reaction that interconverts molecular (H2Om) and hydroxyl (OH) water; reaction kinetics are impor- tant because final species distribution depends on cooling history. Here we develop a flexible 1D numerical model for di!usion and speciation of water in silicate melts. We validate the model against FTIR transects of the spatial distribution of molecular, hydroxyl, and total water across di!usion-couple experiments of haplogranite composition, run at 800–1200 C and 5 kbar. We adopt a stepwise approach to analysing and modelling the data. First, we use the analytical Sauer-Freise method to deter- mine the e!ective di!usivity of total water DH2Ot as a function of dissolved water concentration CH2Ot and temperature T for each experiment and find that the dependence of DH2 Ot on CH2 Ot is linear for CH2 Ot K 1:8 wt.% and exponential for CH2 Ot J 1:8 wt.%. Second, we develop a 1D numerical forward model, using the method of lines, to determine a piece-wise function for DH2 Ot !CH2 Ot ; T " that is globally-minimized against the entire experimental dataset. Third, we extend this numerical model to account for speciation of water and determine globally-minimized functions for di!usivity of molecular water DH2 Om !CH2 Ot ; T " and the equilibrium constant K for the speciation reaction. Our approach includes three key novelties: (1) functions for dif- fusivities of H2Ot and H2Om, and the speciation reaction, are minimized simultaneously against a large experimental dataset, covering a wide range of water concentration (0:25 CH2 Ot 7 wt.%) and temperature (800  C T 1200  C), such that the resulting functions are both mutually-consistent and broadly applicable; (2) the minimization allows rigorous and robust analysis of uncertainties such that the accuracy of the functions is quantified; (3) the model can be straightforwardly used to determine functions for di!usivity and speciation for other melt compositions pending suitable di!usion-couple experiments. The modelling approach is suitable for both forward and inverse modelling of di!usion processes in silicate melts; the model is available as a MATLAB script from the electronic supplementary material. 
    more » « less
  2. null (Ed.)
    Following rapid decompression in the conduit of a volcano, magma breaks into ash- to block-sized fragments, powering explosive sub-Plinian and Plinian eruptions that may generate destructive pyroclastic falls and flows. It is thus crucial to assess how magma breaks up into fragments. This task is difficult, however, because of the subterranean nature of the entire process and because the original size of pristine fragments is modified by secondary fragmentation and expansion. New textural observations of sub-Plinian and Plinian pumice lapilli reveal that some primary products of magma fragmentation survive by sintering together within seconds of magma break-up. Their size distributions reflect the energetics of fragmentation, consistent with products of rapid decompression experiments. Pumice aggregates thus offer a unique window into the previously inaccessible primary fragmentation process and could be used to determine the potential energy of fragmentation. 
    more » « less
  3. null (Ed.)
    Dense, vitric, dacitic pyroclasts (dacite lithics) from the 1991 preclimactic explosions of Mt. Pinatubo were analyzed for their vesicular and crystal textures and dissolved H2O and CO2 contents. Micron-scale heterogeneities in groundmass glass volatile contents (0.9 wt% differences in H2O within 500 μm) are observed and argue that parts of the dacite lithics equilibrated at different depths before finally being constructed. Greater vesicularities and larger and greater number densities of vesicles are observed in groundmass glass around phenocrysts compared to groundmass glass away from phenocrysts, similar to textures produced in experiments that sintered bimodal distributions of particles. Furthermore, increasingly greater proportions of stretched and distorted vesicles are observed in lithics from the later explosions, which parallels the increasingly shorter reposes between explosions. Finally, micron-sized crystal fragments are ubiquitous in groundmass glass of all dacite lithics. The textures, together with the variable volatile contents, lead us to propose a model that the dacite lithics formed by rapid and repetitive sintering of ash particles derived from a variety of depths on the conduit walls above the fragmentation level. We speculate that sintering of conduit material produced impermeable layers that retarded gas flow through the conduit, causing pressure to build until the cap failed and the next explosion occurred. 
    more » « less
  4. null (Ed.)
    Acoustic compressional and shear wave velocities (VP, VS) of anhydrous (AHRG) and hydrous rhyolitic glasses (HRG) containing 3.28 wt% (HRG-3) and 5.90 wt% (HRG-6) total water concentra- tion (H2Ot) have been measured using Brillouin light scattering (BLS) spectroscopy up to 3 GPa in a diamond-anvil cell at ambient temperature. In addition, Fourier-transform infrared (FTIR) spectroscopy was used to measure the speciation of H2O in the glasses up to 3 GPa. At ambient pressure, HRG-3 contains 1.58 (6) wt% hydroxyl groups (OH–) and 1.70 (7) wt% molecular water (H2Om) while HRG-6 contains 1.67 (10) wt% OH– and 4.23 (17) wt% H2Om where the numbers in parentheses are ±1σ. With increasing pressure, very little H2Om, if any, converts to OH– within uncertainties in hydrous rhyolitic glasses such that HRG-6 contains much more H2Om than HRG-3 at all experimental pressures. We observe a nonlinear relationship between high-pressure sound velocities and H2Ot, which is attributed to the distinct effects of each water species on acoustic velocities and elastic moduli of hydrous glasses. Near ambient pressure, depolymerization due to OH– reduces VS and G more than VP and KS. VP and KS in both anhydrous and hydrous glasses decrease with increasing pressure up to ~1–2 GPa before increasing with pressure. Above ~1–2 GPa, VP and KS in both hydrous glasses converge with those in AHRG. In particular, VP in HRG-6 crosses over and becomes higher than VP in AHRG. HRG-6 displays lower VS and G than HRG-3 near ambient pressure, but VS and G in these glasses converge above ~2 GPa. Our results show that hydrous rhyolitic glasses with ~2–4 wt% H2Om can be as incompressible as their anhydrous counterpart above ~1.5 GPa. The nonlinear effects of hydration on high-pressure acoustic velocities and elastic moduli of rhyolitic glasses observed here may provide some insight into the behavior of hydrous silicate melts in felsic magma chambers at depth. 
    more » « less
  5. null (Ed.)
    The di!usion of water through silicate melts is a key process in volcanic systems. Di!usion controls the growth of the bub- bles that drive volcanic eruptions and determines the evolution of the spatial distribution of dissolved water during and after magma mingling, crystal growth, fracturing and fragmentation, and welding of pyroclasts. Accurate models for water di!u- sion are therefore essential for forward modelling of eruptive behaviour, and for inverse modelling to reconstruct eruptive and post-eruptive history from the spatial distribution of water in eruptive products. Existing models do not include the kinetics of the homogeneous species reaction that interconverts molecular (H2Om) and hydroxyl (OH) water; reaction kinetics are impor- tant because final species distribution depends on cooling history. Here we develop a flexible 1D numerical model for di!usion and speciation of water in silicate melts. We validate the model against FTIR transects of the spatial distribution of molecular, hydroxyl, and total water across di!usion-couple experiments of haplogranite composition, run at 800–1200 C and 5 kbar. We adopt a stepwise approach to analysing and modelling the data. First, we use the analytical Sauer-Freise method to deter- mine the e!ective di!usivity of total water DH2Ot as a function of dissolved water concentration CH2Ot and temperature T for each experiment and find that the dependence of DH2 Ot on CH2 Ot is linear for CH2 Ot K 1:8 wt.% and exponential for CH2 Ot J 1:8 wt.%. Second, we develop a 1D numerical forward model, using the method of lines, to determine a piece-wise function for DH2 Ot !CH2 Ot ; T " that is globally-minimized against the entire experimental dataset. Third, we extend this numerical model to account for speciation of water and determine globally-minimized functions for di!usivity of molecular water DH2 Om !CH2 Ot ; T " and the equilibrium constant K for the speciation reaction. Our approach includes three key novelties: (1) functions for dif- fusivities of H2Ot and H2Om, and the speciation reaction, are minimized simultaneously against a large experimental dataset, covering a wide range of water concentration (0:25 CH2 Ot 7 wt.%) and temperature (800  C T 1200  C), such that the resulting functions are both mutually-consistent and broadly applicable; (2) the minimization allows rigorous and robust analysis of uncertainties such that the accuracy of the functions is quantified; (3) the model can be straightforwardly used to determine functions for di!usivity and speciation for other melt compositions pending suitable di!usion-couple experiments. The modelling approach is suitable for both forward and inverse modelling of di!usion processes in silicate melts; the model is available as a MATLAB script from the electronic supplementary material. 
    more » « less
  6. null (Ed.)
    Silicic volcanic activity has long been framed as either violently explosive or gently effusive. However, recent ob- servations demonstrate that explosive and effusive behavior can occur simultaneously. Here, we propose that rhyolitic magma feeding subaerial eruptions generally fragments during ascent through the upper crust and that effusive eruptions result from conduit blockage and sintering of the pyroclastic products of deeper cryptic frag- mentation. Our proposal is supported by (i) rhyolitic lavas are volatile depleted; (ii) textural evidence supports a pyroclastic origin for effusive products; (iii) numerical models show that small ash particles !10−5 m can diffusive- ly degas, stick, and sinter to low porosity, in the time available between fragmentation and the surface; and (iv) inferred ascent rates from both explosive and apparently effusive eruptions can overlap. Our model reconciles previously paradoxical observations and offers a new framework in which to evaluate physical, numerical, and geochemical models of Earth’s most violent volcanic eruptions. 
    more » « less