skip to main content

Search for: All records

Award ID contains: 1725272

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Self-consistent field theory is employed to compute the phase behavior of binary blends of conformationally asymmetric, micelle-forming diblock copolymers with miscible corona blocks and immiscible core blocks (a diblock copolymer “alloy”). The calculations focus on establishing conditions that promote the formation of Laves phases by tuning the relative softness of the cores of the two different Laves phase particles via independent control of their conformational asymmetries. Increasing the conformational asymmetry of the more spherical particles of the Laves structure has a stabilizing effect, consistent with the expectations of increased imprinting of the Wigner–Seitz cells on the core/corona interface as conformational asymmetry increases. The resulting phase diagram in the temperature-blend composition space features a more stable Laves phase field than that predicted for conformationally symmetric systems. The phase field closes at low temperatures in favor of macrophase separation between a hexagonally-packed cylinder (hex) phase and a body-centered cubic phase. Companion calculations, using an alloy whose components do not produce a hex phase in the neat melt state, suggest that the Laves phase field in such a blend will persist at strong segregation. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    The C14 and C15 Laves phases form as micelle packing structures in many types of soft matter, but the related C36 phase, which consists of alternating C14-type and C15-type layers, has not been observed in any such system. To understand this absence in the context of diblock polymers, we used self-consistent field theory to relate the morphology and energetics of C36 to other known mesophases. Two case studies were conducted: blends of AB diblock polymers with A homopolymers (where A forms the micelle core), in which C14 and C15 have stability windows, and neat AB diblock melts, in which Laves phases are metastable. Laves phases exhibit nearly identical micelle morphologies and nearly degenerate free energies, with the free energy of C36 being a near-perfect bisector of the C14 and C15 free energies in all cases, revealing an intrinsic symmetry in free energy that is attributed solely to the structural relationship between the phases in which the packing of C36 is intermediate between C14 and C15. Based on this connection between structure and free energy, C36 is thus not expected to form in flexible diblock polymers, since C14 and C15 can always form instead via facile mass transfer. 
    more » « less
  4. null (Ed.)