skip to main content


Search for: All records

Award ID contains: 1725423

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Makerspaces are common in engineering programs around the country and around the world. As universities invest more into these spaces, researchers investigate more the impacts of making in the educational setting. As more students across more educational contexts get involved in making and makerspaces, there is a greater need for educators to gain a more wholistic understanding of the impacts of making on the academic environment, both positive and negative. In this paper, we look at the critical relationship between makerspaces and academic performance at a unique university with a design-centric approach to engineering education. This study presents three key findings: First, more involvement in making early in the curriculum is related to increased retention. Second, increased anxiety towards engineering design is connected to both lower retention and lower involvement in academic makerspaces. Third, GPA and makerspace activity are largely independent at this university where the engineering curriculum prescribes engineering students’ engagement in making. As impacts of academic makerspaces are unfolding before us, these findings shed a positive light on their contribution to engineering education. 
    more » « less
  2. It is challenging to effectively educate in large classes with students from a multitude of backgrounds. Many introductory engineering courses in universities have hundreds of students, and some online classes are even larger. Instructors in these circumstances often turn to online homework systems, which help greatly reduce the grading burden; however, they come at the cost of reducing the quality of feedback that students receive. Since online systems typically can only automatically grade multiple choice or numeric answer questions, students predominately do not receive feedback on the critical skill of sketching free-body diagrams (FBD). An online, sketch-recognition based tutoring system called Mechanix requires students to draw free-body diagrams for introductory statics courses in addition to grading their final answers. Students receive feedback about their diagrams that would otherwise be difficult for instructors to provide in large classes. Additionally, Mechanix can grade open-ended truss design problems with an indeterminate number of solutions. Mechanix has been in use for over six semesters at five different universities by over 1000 students to study its effectiveness. Students used Mechanix for one to three homework assignments covering free-body diagrams, static truss analysis, and truss design for an open-ended problem. Preliminary results suggest the system increases homework engagement and effort for students who are struggling and is as effective as other homework systems for teaching statics. Focus groups showed students enjoyed using Mechanix and that it helped their learning process. 
    more » « less
  3. In online or large in-person course sections, instructors often adopt an online homework tool to alleviate the burden of grading. While these systems can quickly tell students whether they got a problem correct for a multiple-choice or numeric answer, they are unable to provide feedback on students’ free body diagrams. As the process of sketching a free body diagram correctly is a foundational skill to solving engineering problems, the loss of feedback to the students in this area is a detriment to students. To address the need for rapid feedback on students’ free body diagram sketching, the research team developed an online, sketch-recognition system called Mechanix. This system allows students to sketch free body diagrams, including for trusses, and receive instant feedback on their sketches. The sketching feedback is ungraded. After the students have a correct sketch, they are then able to enter in the numeric answers for the problem and submit those for a grade. Thereby, the platform offers the grading convenience of other online homework systems but also helps the students develop their free body diagram sketching skills. To assess the efficacy of this experimental system, standard concept inventories were administered pre- and post-semester for both experimental and control groups. The unfamiliarity or difficulty of some advanced problems in the Statics Concept Inventory, however, appeared to discourage students, and many would stop putting in any effort after a few problems that were especially challenging to solve. This effect was especially pronounced with the Construction majors versus the Mechanical Engineering majors in the test group. To address this tendency and therefore collect more complete pre- and post-semester concept inventory data, the research group worked on reordering the Statics Concept Inventory questions from more familiar to more challenging, based upon the past performance of the initial students taking the survey. This paper describes the process and results of the effort to reorder this instrument in order to increase Construction student participation and, therefore, the researchers’ ability to measure the impact of the Mechanix system. 
    more » « less
  4. Sketching free body diagrams is an important skill that students learn in introductory physics and engineering classes; however, university class sizes are growing and often have hundreds of students in a single class. This creates a grading challenge for instructors as there is simply not enough time nor resources to provide adequate feedback on every problem. We have developed an intelligent user interface called Mechanix to provide automated, real-time feedback on hand-drawn free body diagrams for students. The system is driven by novel sketch recognition algorithms developed for recognizing and comparing trusses, general shapes, and arrows in diagrams. We have also discovered trends in how the students utilize extra submissions for learning through deployment to five universities with 350 students completing homework on the system over the 2018 and 2019 school year. A study with 57 students showed the system allowed for homework scores similar to other homework mediums while requiring and automatically grading the free body diagrams in addition to answers. 
    more » « less
  5. Large class sizes in engineering programs often prevent instructors from providing detailed and meaningful feedback to students on their homework problems. While the literature shows that frequent and immediate formative feedback has several benefits in terms of knowledge gain and academic motivation, several instructors struggle to provide any feedback. Motivated by this inability, a sketch-based virtual tutoring system, named Mechanix, has been developed and implemented. Mechanix lets the students to sketch their freebody diagram on a virtual interface and the process involved is very close to using a pencil and paper. The system provides real-time feedback on the accuracy of their Freebody diagrams and the solution to the problem. This paper reports the implementation of Mechanix at two large public universities in the United States – Georgia Institute of Technology and Texas State University. Mechanix is used to solve specific assignments from each school that involve the use of freebody diagrams. Pre- and post- concept inventories are used to measure the improvements in the conceptual understanding of the students. The results show that students who solve their homework using Mechanix outperform their peers who do not in one school, whereas the results are similar across the two groups in the second school. The evaluation of the concept inventories shows that the students who used Mechanix has the same level of improvement in their conceptual knowledge compared to the control group. 
    more » « less