Machine learning offers an intriguing alternative to first-principle analysis for discovering new physics from experimental data. However, to date, purely data-driven methods have only proven successful in uncovering physical laws describing simple, low-dimensional systems with low levels of noise. Here we demonstrate that combining a data-driven methodology with some general physical principles enables discovery of a quantitatively accurate model of a non-equilibrium spatially extended system from high-dimensional data that is both noisy and incomplete. We illustrate this using an experimental weakly turbulent fluid flow where only the velocity field is accessible. We also show that this hybrid approach allows reconstruction of the inaccessible variables – the pressure and forcing field driving the flow.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources7
- Resource Type
-
00000070000
- More
- Availability
-
70
- Author / Contributor
- Filter by Author / Creator
-
-
Grigoriev, Roman O. (6)
-
Schatz, Michael F. (3)
-
Suri, Balachandra (3)
-
Gurevich, Daniel R. (2)
-
Reinbold, Patrick A. (2)
-
Grigoriev, Roman_O (1)
-
Kageorge, Logan (1)
-
Kageorge, Logan_M (1)
-
Pallantla, Ravi Kumar (1)
-
Reinbold, Patrick A. K. (1)
-
Reinbold, Patrick_A_K (1)
-
Schatz, Michael_F (1)
-
Tithof, Jeffrey (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Suri, Balachandra ; Kageorge, Logan ; Grigoriev, Roman O. ; Schatz, Michael F. ( , Physical Review Letters)
-
Reinbold, Patrick A. ; Gurevich, Daniel R. ; Grigoriev, Roman O. ( , Physical Review E)
-
Gurevich, Daniel R. ; Reinbold, Patrick A. K. ; Grigoriev, Roman O. ( , Chaos: An Interdisciplinary Journal of Nonlinear Science)
-
Reinbold, Patrick A. ; Grigoriev, Roman O. ( , Physical Review E)
-
Suri, Balachandra ; Pallantla, Ravi Kumar ; Schatz, Michael F. ; Grigoriev, Roman O. ( , Physical Review E)
-
Suri, Balachandra ; Tithof, Jeffrey ; Grigoriev, Roman O. ; Schatz, Michael F. ( , Physical Review E)