skip to main content


Search for: All records

Award ID contains: 1725919

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As nanotechnology becomes increasingly used in biomedicine, it is important to have techniques by which to examine the structure and dynamics of biologically-relevant molecules on the surface of engineered nanoparticles. Previous work has shown that Saturation-Transfer Difference (STD)-NMR can be used to explore the interaction between small molecules, including amino acids, and the surface of polystyrene nanoparticles. Here we use STD-NMR to further explore the different driving forces that are responsible for these interactions. Electrostatic effects are probed by using zwitterionic polystyrene beads and performing STD-NMR experiments at high, low, and neutral pH, as well as by varying the salt concentration and observing the effect on the STD buildup curve. The influence of dispersion interactions on ligand-nanoparticle binding is also explored, by establishing a structure–activity relationship for binding using a series of unnatural amino acids with different lengths of hydrophobic side chains. These results will be useful for predicting which residues in a peptide are responsible for binding and for understanding the driving forces for binding between peptides and nanoparticles in future studies.

     
    more » « less
  2. Abstract

    The nuclear magnetic resonance (NMR) chemical shift is extremely sensitive to molecular geometry, hydrogen bonding, solvent, temperature, pH, and concentration. Calculated magnetic shielding constants, converted to chemical shifts, can be valuable aids in NMR peak assignment and can also give detailed information about molecular geometry and intermolecular effects. Calculating chemical shifts in solution is complicated by the need to include solvent effects and conformational averaging. Here, we review the current state of NMR chemical shift calculations in solution, beginning with an introduction to the theory of calculating magnetic shielding in general, then covering methods for inclusion of solvent effects and conformational averaging, and finally discussing examples of applications using calculated chemical shifts to gain detailed structural information.

     
    more » « less
  3. Free, publicly-accessible full text available December 18, 2024
  4. Goldup, S (Ed.)
    Thermodynamically favored simultaneous coordination of Pt(II) corners with aza- and carboxylate ligands yields tricomponent coordination complexes with sophisticated structures and functions, which require careful structural characterization to paint accurate depiction of their structure–function relationships. Previous reports had claimed that heteroleptic coordination of cis-(Et3P)2PtII with tetrapyridyl porphyrins (M'TPP, M' = Zn or H2) and dicarboxylate ligands (XDC) yielded 3D tetragonal prisms containing two horizontal M'TPP faces and four vertical XDC pillars connected by eight Pt(II) corners, even though such structures were not supported by their 1H NMR data. Through extensive X-ray crystallographic and NMR studies, herein, we demonstrate that self-assembly of cis-(Et3P)2PtII, M'TPP, and four different XDC linkers having varied lengths and rigidity actually yields bow-tie (⋈)-shaped 2D [{cis-(Et3P)2Pt}4(M'TPP)(XDC)2]4+ complexes featuring a M'TPP core and two parallel XDC linkers connected by four heteroleptic PtII corners instead of 3D prisms. This happened because (i) irrespective of their length (~7–11 Å) and rigidity, the XDC linkers intramolecularly bridged two adjacent pyridyl-N atoms of a M'TPP core via PtII corners instead of connecting two cofacial M'TPP ligands and (ii) the bow-tie complexes are entropically more favored over prisms. The electron-rich ZnTPP core of a bow-tie complex selectively formed a charge-transfer complex with highly π-acidic 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-heaxacarbonitrile but not with a π-donor like pyrene. Thus, this work not only produced novel M'TPP-based bow-tie complexes and demonstrated their selective π-acid recognition capability, but also underscored the importance of proper structural characterization of supramolecular assemblies to ensure accurate depiction of their structure–property relationships. 
    more » « less