skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1726092

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cobalt(II) acetylacetonate complexes bearing a phosphine ligand can be key intermediates or precursors to cobalt‐based catalysts; however, they have been rarely studied, especially from a molecular structure point of view. This work is focused on the understanding of how different phosphines react with Co(acac)2(acac = acetylacetonate). To do so, a variety of analytical tools, including NMR and IR spectroscopy, X‐ray crystallography, mass spectrometry, and elemental analysis, have been used to study the reactions and characterize the isolated products. These results have shown that the monodentate ligand, HPPh2, binds to Co(acac)2weakly and reversibly to produce Co2(acac)4(HPPh2), whereas the bidentate ligand, 1,2‐bis(diphenylphosphino)ethane (dppe), interacts with Co(acac)2more strongly to yield a 1D coordination polymer of Co(acac)2(dppe). 2‐(Dicyclohexylphosphino)methyl‐1 H‐pyrrole (CyPNH), which is a pyrrole‐tethered phosphine, forms an unusual 5‐coordinate cobalt complex, Co(acac)2(CyPNH), in which the pyrrole moiety participates in a bifurcated hydrogen–bonding interaction with the [acac]ligands. In contrast, another bidentate ligand, 4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene (xantphos), fails to react with Co(acac)2, presumably due to its wide bite angle and difficulty in bridging two metals. 
    more » « less
  2. A dodecanuclear copper hydride L4Cu12H12is shown to be a transient species after the cluster expansion from L2Cu4H4to L3Cu6H6and before the degradation to Cu(0), L, and H2
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  3. This work centers around the nickel complexes derived from two tetrahydrosalen-type proligands: N , N ′-bis(2-hydroxybenzyl)- o -phenylenediamine (H 2 salophan) and N , N ′-bis(2-hydroxy-3-methylbenzyl)- o -phenylenediamine (H 2 salophan_Me). The reaction of H 2 salophan with Ni(OAc) 2 ·4H 2 O generates a dinuclear complex Ni 2 (Hsalophan) 2 (OAc) 2 or Na[Ni 2 (salophan) 2 (OAc)] when NaOH is added to assist ligand deprotonation. The reaction of H 2 salophan_Me with Ni(OAc) 2 ·4H 2 O, however, yields a mononuclear complex Ni(Hsalophan_Me) 2 . Unlike the corresponding salen-type nickel complexes, these tetrahydrosalen-type complexes are paramagentic and air sensitive (in solution). Oxidation by O 2 or peroxides results in dehydrogenation of the ligand backbone to form the salen-type complexes. 
    more » « less