Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent developments such as multi-harmonic Atomic Force Microscopy (AFM) techniques have enabled fast, quantitative mapping of nanomechanical properties of living cells. Due to their high spatiotemporal resolution, these methods provide new insights into changes of mechanical properties of subcellular structures due to disease or drug response. Here, we propose three new improvements to significantly improve the resolution, identification, and mechanical property quantification of sub-cellular and sub-nuclear structures using multi-harmonic AFM on living cells. First, microcantilever tips are streamlined using long-carbon tips to minimize long-range hydrodynamic interactions with the cell surface, to enhance the spatial resolution of nanomechanical maps and minimize hydrodynamic artifacts. Second, simultaneous Spinning Disk Confocal Microscopy (SDC) with live-cell fluorescent markers enables the unambiguous correlation between observed heterogeneities in nanomechanical maps with subcellular structures. Third, computational approaches are then used to estimate the mechanical properties of sub-nuclear structures. Results are demonstrated on living NIH 3T3 fibroblasts and breast cancer MDA-MB-231 cells, where properties of nucleoli, a deep intracellular structure, were assessed. The integrated approach opens the door to study the mechanobiology of sub-cellular structures during disease or drug response.more » « less
-
The simultaneous excitation and measurement of two eigenmodes in bimodal atomic force microscopy (AFM) during sub-micron scale surface imaging augments the number of observables at each pixel of the image compared to the normal tapping mode. However, a comprehensive connection between the bimodal AFM observables and the surface adhesive and viscoelastic properties of polymer samples remains elusive. To address this gap, we first propose an algorithm that systematically accommodates surface forces and linearly viscoelastic three-dimensional deformation computed via Attard's model into the bimodal AFM framework. The proposed algorithm simultaneously satisfies the amplitude reduction formulas for both resonant eigenmodes and enables the rigorous prediction and interpretation of bimodal AFM observables with a first-principles approach. We used the proposed algorithm to predict the dependence of bimodal AFM observables on local adhesion and standard linear solid (SLS) constitutive parameters as well as operating conditions. Secondly, we present an inverse method to quantitatively predict the local adhesion and SLS viscoelastic parameters from bimodal AFM data acquired on a heterogeneous sample. We demonstrate the method experimentally using bimodal AFM on polystyrene-low density polyethylene (PS-LDPE) polymer blend. This inverse method enables the quantitative discrimination of adhesion and viscoelastic properties from bimodal AFM maps of such samples and opens the door for advanced computational interaction models to be used to quantify local nanomechanical properties of adhesive, viscoelastic materials using bimodal AFM.more » « less
-
We present a method by which multi-harmonic signals acquired during a normal tapping mode (amplitude modulated) AFM scan of a sample in air or vacuum with standard microcantilevers can be used to map quantitatively the local mechanical properties of the sample such as elastic modulus, adhesion, and indentation. The approach is based on the observation that during the tapping mode operation in air or vacuum, the 0th and 2nd harmonic signals of microcantilever vibration are encountered under most operating conditions and can be mapped with sufficient signal to noise ratio. By measuring the amplitude and phase of the driven harmonic as well as the 0th and 2nd harmonic observables, we find analytical/semi-analytical formulas that relate these multi-harmonic observables to local mechanical properties for several classical tip-sample interaction models. Least squares estimation of the local mechanical properties is performed pixel by pixel. The method is validated through computations as well as experimental data acquired on a polymer blend made of Polystyrene and Polyolefin elastomer.more » « less
-
Mechanical properties play important roles at different scales in biology. At the level of a single cell, the mechanical properties mediate mechanosensing and mechanotransduction, while at the tissue and organ levels, changes in mechanical properties are closely connected to disease and physiological processes. Over the past three decades, atomic force microscopy (AFM) has become one of the most widely used tools in the mechanical characterization of soft samples, ranging from molecules, cell organoids and cells to whole tissue. AFM methods can be used to quantify both elastic and viscoelastic properties, and significant recent developments in the latter have been enabled by the introduction of new techniques and models for data analysis. Here, we review AFM techniques developed in recent years for examining the viscoelastic properties of cells and soft gels, describe the main steps in typical data acquisition and analysis protocols, and discuss relevant viscoelastic models and how these have been used to characterize the specific features of cellular and other biological samples. We also discuss recent trends and potential directions for this field.more » « less