skip to main content


Search for: All records

Award ID contains: 1726633

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A process to achieve 1,2‐metalate rearrangements of indole boronate as a way to access substituted indolines in high diastereoselectivities is presented. The reaction involves the generation of a Cu–allenylidene, which is sufficiently electrophilic to induce the 1,2‐metalate rearrangement. The scope of the reaction is evaluated as well as further transformations of the product.

     
    more » « less
  2. Abstract

    Double‐allylation reagents allow for the construction of highly complex molecules in an expedient fashion. We have developed an efficient, modular, and enantioselective approach towards accessing novel variants of these reagents through Cu/Pd‐catalyzed alkenylboration of alkenylboron derivatives. Importantly, we demonstrate novel use of an allylBdan reagent directly in a stereocontrolled allylation without initial deprotection to the boronic ester. These allylation products are employed in a second intermolecular allylation to access complex diol motifs, which has yet to be shown with these types of double‐allylation reagents. Overall, the modularity of this approach and the ease in which complex structural motifs can be accessed in a rapid manner signify the importance and utility of this method.

     
    more » « less
  3. Abstract

    A method for the stereoselective [4+2]‐cycloaddition of alkenylboranes and dienes is presented. This transformation was accomplished through the introduction of a new strategy that involves the use of chiral N‐protonated alkenyl oxazaborolidines as dieneophiles. The reaction leads to the formation of products that can be readily derivatized to more complex structural motifs through stereospecific transformations of the C−B bond such as oxidation and homologation. Detailed computation evaluation of the reaction has uncovered a surprising role of the counterion on stereoselectivity.

     
    more » « less
  4. Abstract

    The synthesis of structurally complex and highly strained natural products provides unique challenges and unexpected opportunities for the development of new reactions and strategies. Herein, the synthesis of (+)‐[5]‐ladderanoic acid is reported. En route to the target, unusual and unexpected strain release driven transformations were uncovered. This occurrence required a drastic revision of the synthetic design that ultimately led to the development of a novel stepwise cyclobutane assembly by an allylboration/Zweifel olefination sequence.

     
    more » « less
  5. Abstract

    Two methods are reported for the 1,2‐ and 1,1‐arylboration of α‐methyl vinyl arenes. In the case of 1,2‐arylboration, the formation of a quaternary center occurred through a rare cross‐coupling reaction of a tertiary organometallic complex. 1,1‐Arylboration was enabled by catalyst optimization and occurred through a β‐hydride elimination/reinsertion cascade. Enantioselective variants of both processes are presented as well as mechanistic investigations.

     
    more » « less
  6. null (Ed.)
  7. Branchi, Igor (Ed.)
    Excessive home cage aggression often results in severe injury and subsequent premature euthanasia of male laboratory mice. Aggression can be reduced by transferring used nesting material during cage cleaning, which is thought to contain aggression appeasing odors from the plantar sweat glands. However, neither the composition of plantar sweat nor the deposits on used nesting material have been evaluated. The aims of this study were to (1) identify and quantify volatile compounds deposited in the nest site and (2) determine if nest and sweat compounds correlate with social behavior. Home cage aggression and affiliative behavior were evaluated in 3 strains: SJL, C57BL/6N, and A/J. Individual social rank was assessed via the tube test, because ranking may influence compound levels. Sweat and urine from the dominant and subordinate mouse in each cage, plus cage level nest samples were analyzed for volatile compound content using gas chromatography-mass spectrometry. Behavior data and odors from the nest, sweat, and urine were statistically analyzed with separate principal component analyses (PCA). Significant components, from each sample analysis, and strain were run in mixed models to test if odors were associated with behavior. Aggressive and affiliative behaviors were primarily impacted by strain. However, compound PCs were also impacted by strain, showing that strain accounts for any relationship between odors and behavior. C57BL/6N cages displayed the most allo-grooming behavior and had high scores on sweat PC1. SJL cages displayed the most aggression, with high scores on urine PC2 and low scores on nest PC1. These data show that certain compounds in nesting material, urine, and sweat display strain specific patterns which match strain specific behavior patterns. These results provide preliminary information about the connection between home cage compounds and behavior. Salient compounds will be candidates for future controlled studies to determine their direct effect on mouse social behavior. 
    more » « less
  8. null (Ed.)
    Through the combination of a Ni-catalyzed alkene alkenylboration followed by hydrogenation, the synthesis of congested Csp 3 –Csp 3 -bonds can be achieved. Conditions have been identified that allow for the use of both alkenyl-bromides and -triflates. In addition, the hydrogenation creates another opportunity for stereocontrol, thus allowing access to multiple stereoisomers of the product. Finally, the method is demonstrated in the streamlined synthesis of a biologically relevant molecule. 
    more » « less
  9. null (Ed.)
    A Ni-catalyzed silylacylation of alkenes is presented. The reaction combines alkenes, ClZnSiR3, and acid chlorides to provide rapid access to β-silyl ketones. Importantly, the method involves a [Ni]-SiR3 complex as a catalytic intermediate, which is rarely described for three-component alkene functionalization. Finally, the synthetic utility of the products is demonstrated, and the mechanistic details are described. 
    more » « less