skip to main content


Search for: All records

Award ID contains: 1727661

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding the stress state before and after an earthquake is essential to study how stress on faults evolves during the seismic cycle. This study integrates wellbore failure analysis, laboratory experiments, and edge dislocation model to study the stress state before and after the Chi‐Chi earthquake. The post‐earthquake in‐situ stress state observed along boreholes of the Taiwan Chelungpu‐fault Drilling Project (TCDP) is heterogeneous due to lithological variations. Along the borehole, we observe that drilling‐induced tensile fractures are only present in sandstones, whereas breakouts are mostly present in silt‐rich rocks. Laboratory experiments on TCDP cores also show that tensile and compressive strength are weaker in sandstones than in silt‐rich rocks. These observations imply that both maximum and minimum horizontal principal stresses are higher in silt‐rich intervals. Extended leak‐off tests in the TCDP borehole also show lower minimum horizontal stress in sand‐rich intervals, consistent with the above observations. We combine these observations to estimate a profile of stress magnitudes along the well which explains the variability of stress states found in previous studies. The stress heterogeneity we observed underlines the importance of acknowledging the spatial scale that the stress data represent. We then use an edge dislocation model constrained by GPS surface displacements obtained during Chi‐Chi earthquake to calculate the coseismic stress changes. Our inferred pre‐earthquake stress magnitudes, obtained by subtracting the coseismic stress change from the post‐earthquake stress, suggest subcritical stress state before the earthquake despite the large displacements observed during the Chi‐Chi earthquake in the region where TCDP encountered the fault.

     
    more » « less
  2. null (Ed.)
    We observed and modeled the elastic, inelastic and time-dependent viscous properties of damaged Berea Sandstone samples to investigate the impact of damage on the rheological properties of rocks. Cylindrical Berea Sandstone plugs were prepared both parallel and perpendicular to bedding. We impacted the samples with Split Hopkinson Pressure Bar to pervasively fracture the specimens at different strain rates. Longitudinal mode-I fractures are dominant in specimens impacted at relatively low strain rates (about 130 /s), whereas shear fractures also form in specimens deformed at high strain rates (up to 250 /s). The damaged rocks were subjected to multiple steps of differential stress loading and hold stages under 15 MPa confining pressure. A key observation is that higher damaged specimens showed greater axial and volumetric creep strain deformation during loading and hold stages. Poisson ratio also increase with increasing damage. We modeled the volumetric strain of the sandstone specimens using a Perzyna viscoplasticity law that employs the Modified Cam Clay model as the yield criterion (Haghighat et al. 2020). We deduced that fractured rocks undergo substantial bulk time-dependent deformation due to volumetric compaction and fracture closure. Damage increase results in decrease of the effective viscosity of the material. 
    more » « less