skip to main content


Search for: All records

Award ID contains: 1727774

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Intense precipitation or seismic events can generate clustered mass movement processes across a landscape. These rare events have significant impacts on the landscape, however, the rarity of such events leads to uncertainty in how they impact the entire geomorphic system over a range of timescales. Taiwan is steep, tectonically active, and prone to landslide and debris flows, especially when exposed to heavy rainfall events. Typhoon Morakot made landfall in Taiwan in August of 2009, causing widespread landslides in southern Taiwan. The south to north trend in valley relief in southern Taiwan leads to spatial variability in landslide susceptibility providing an opportunity to infer the long‐term impact of such landslide events on channel morphology. We use pre‐ and post‐typhoon imagery to quantify the propagating impact of this event on channel width as the debris is routed through the landscape. The results show the importance of cascading hazards from landslides on landscape evolution based on patterns of channel width (both pre‐ and post‐typhoon) and hillslope gradients in 20 basins along strike in southern Taiwan. Prior to Typhoon Morakot, the river channels in the central part of the study area were about 3–10 times wider than the channels in the south. Following the typhoon, aggradation and widening was also a maximum in these central to northern basins where hillslope gradients and channel steepness is high, accentuating the pre‐typhoon pattern. The results further show that the narrowest channels are located where channel steepness is the lowest, an observation inconsistent with a detachment‐limited model for river evolution. We infer this pattern is indicative of a strong role of sediment supply, and associated landslide events, on long‐term channel evolution. These findings have implications across a range of spatial and temporal scales including understanding the cascade of hazards in steep landscapes and geomorphic interpretation of channel morphology. Copyright © 2018 John Wiley & Sons, Ltd.

     
    more » « less
  2. Abstract In most landscape evolution models, extreme rainfall enhances river incision. In steep landscapes, however, these events trigger landslides that can buffer incision via increased sediment delivery and aggradation. We quantify landslide sediment aggradation and erosional buffering with a natural experiment in southern Taiwan where a northward gradient in tectonic activity drives increasing landscape steepness. We find that landscape response to extreme rainfall during the 2009 typhoon Morakot varied along this gradient, where steep areas experienced widespread channel sediment aggradation of >10 m and less steep areas did not noticeably aggrade. We model sediment export to estimate a sediment removal timeline and find that steep, tectonically active areas with the most aggradation may take centuries to resume bedrock incision. Expected sediment cover duration reflects tectonic uplift. We find that despite high stream power, sediment cover may keep steep channels from eroding bedrock for up to half of a given time period. This work highlights the importance of dynamic sediment cover in landscape evolution and suggests a mechanism by which erosional efficiency in tectonically active landscapes may decrease as landscape steepness increases. 
    more » « less